Accounting for animal density gradients using independent information in distance sampling surveys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Tiago A. Marques, Stephen T. Buckland, Regina Bispo, Brett Howland

ABSTRACT

Distance sampling is extensively used for estimating animal density or abundance. Conventional methods assume that location of line or point transects is random with respect to the animal population, yet transects are often placed along linear features such as roads, rivers or shorelines that do not randomly sample the study region, resulting in biased estimates of abundance. If it is possible to collect additional data that allow an animal density gradient with respect to the transects to be modelled, we show how to extend the conventional distance sampling likelihood to give asymptotically unbiased estimates of density for the covered area. We illustrate the proposed methods using data for a kangaroo population surveyed by line transects laid along tracks, for which the true density is known from an independent source, and the density gradient with respect to the tracks is estimated from a sample of GPS collared animals. For this example, density of animals increases with distance from the tracks, so that detection probability is overestimated and density underestimated if the non-random location of transects is ignored. When we account for the density gradient, there is no evidence of bias in the abundance estimate. We end with a list of practical recommendations to investigators conducting distance sampling surveys where density gradients could be an issue. More... »

PAGES

67-80

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10260-012-0223-2

DOI

http://dx.doi.org/10.1007/s10260-012-0223-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007101716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK", 
            "Centro de Estat\u00edstica e Aplica\u00e7\u00f5es da Universidade de Lisboa, Lisboa, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marques", 
        "givenName": "Tiago A.", 
        "id": "sg:person.01333700600.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333700600.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of St Andrews", 
          "id": "https://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buckland", 
        "givenName": "Stephen T.", 
        "id": "sg:person.01325713462.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Universit\u00e1rio de Ci\u00eancias Psicol\u00f3gicas, Sociais e da Vida", 
          "id": "https://www.grid.ac/institutes/grid.410954.d", 
          "name": [
            "Centro de Estat\u00edstica e Aplica\u00e7\u00f5es da Universidade de Lisboa, Lisboa, Portugal", 
            "ISPA, Instituto Universit\u00e1rio, Lisbon, Portugal", 
            "Bio3 - Estudos e Projectos em Biologia e Valoriza\u00e7 \u00e3o de Recursos Naturais, Lda, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bispo", 
        "givenName": "Regina", 
        "id": "sg:person.01363512236.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363512236.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Fenner School of Environment and Society, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Howland", 
        "givenName": "Brett", 
        "id": "sg:person.01161337540.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161337540.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1748-7692.2004.tb01191.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000485885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00227-007-0659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005606616", 
          "https://doi.org/10.1007/s00227-007-0659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00227-007-0659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005606616", 
          "https://doi.org/10.1007/s00227-007-0659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2193/0091-7648(2005)33[745:ftftro]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006326898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-009-0309-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017297734", 
          "https://doi.org/10.1007/s10344-009-0309-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-009-0309-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017297734", 
          "https://doi.org/10.1007/s10344-009-0309-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-009-0309-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017297734", 
          "https://doi.org/10.1007/s10344-009-0309-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-009-0309-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017297734", 
          "https://doi.org/10.1007/s10344-009-0309-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01018.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019532160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13253-010-0021-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969123", 
          "https://doi.org/10.1007/s13253-010-0021-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13253-010-0021-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969123", 
          "https://doi.org/10.1007/s13253-010-0021-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2009.01381.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029461495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2003.00107.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030773137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2003.00107.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030773137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2009.01737.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031201629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2009.01737.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031201629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1198/1085711043578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040307468", 
          "https://doi.org/10.1198/1085711043578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-010-0399-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042630076", 
          "https://doi.org/10.1007/s10344-010-0399-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-010-0399-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042630076", 
          "https://doi.org/10.1007/s10344-010-0399-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3207(02)00117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043466548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wsb.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044612127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00222933.2011.589916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048034954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ar03024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048838231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11252-007-0032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051167534", 
          "https://doi.org/10.1007/s11252-007-0032-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2010.00748.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051817260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1642/0004-8038(2006)123[695:edporb]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068174721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068174786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068174786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7882/9780980327212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103942338"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Distance sampling is extensively used for estimating animal density or abundance. Conventional methods assume that location of line or point transects is random with respect to the animal population, yet transects are often placed along linear features such as roads, rivers or shorelines that do not randomly sample the study region, resulting in biased estimates of abundance. If it is possible to collect additional data that allow an animal density gradient with respect to the transects to be modelled, we show how to extend the conventional distance sampling likelihood to give asymptotically unbiased estimates of density for the covered area. We illustrate the proposed methods using data for a kangaroo population surveyed by line transects laid along tracks, for which the true density is known from an independent source, and the density gradient with respect to the tracks is estimated from a sample of GPS collared animals. For this example, density of animals increases with distance from the tracks, so that detection probability is overestimated and density underestimated if the non-random location of transects is ignored. When we account for the density gradient, there is no evidence of bias in the abundance estimate. We end with a list of practical recommendations to investigators conducting distance sampling surveys where density gradients could be an issue.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10260-012-0223-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043636", 
        "issn": [
          "1618-2510", 
          "1613-981X"
        ], 
        "name": "Statistical Methods & Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Accounting for animal density gradients using independent information in distance sampling surveys", 
    "pagination": "67-80", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21d43f2829b70fee21262e8fe1243d33527fe8d2a769391d9385d4a283e34a88"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10260-012-0223-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007101716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10260-012-0223-2", 
      "https://app.dimensions.ai/details/publication/pub.1007101716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10260-012-0223-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10260-012-0223-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10260-012-0223-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10260-012-0223-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10260-012-0223-2'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10260-012-0223-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc919e35639214425b23374cfba1d4927
4 schema:citation sg:pub.10.1007/s00227-007-0659-3
5 sg:pub.10.1007/s10344-009-0309-9
6 sg:pub.10.1007/s10344-010-0399-4
7 sg:pub.10.1007/s11252-007-0032-9
8 sg:pub.10.1007/s13253-010-0021-y
9 sg:pub.10.1198/1085711043578
10 https://doi.org/10.1002/wsb.53
11 https://doi.org/10.1016/s0006-3207(02)00117-9
12 https://doi.org/10.1071/ar03024
13 https://doi.org/10.1080/00222933.2011.589916
14 https://doi.org/10.1111/j.0006-341x.2003.00107.x
15 https://doi.org/10.1111/j.1365-2664.2009.01737.x
16 https://doi.org/10.1111/j.1467-9876.2010.00748.x
17 https://doi.org/10.1111/j.1541-0420.2008.01018.x
18 https://doi.org/10.1111/j.1541-0420.2009.01381.x
19 https://doi.org/10.1111/j.1748-7692.2004.tb01191.x
20 https://doi.org/10.1642/0004-8038(2006)123[695:edporb]2.0.co;2
21 https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2
22 https://doi.org/10.2193/0091-7648(2005)33[745:ftftro]2.0.co;2
23 https://doi.org/10.2307/2347618
24 https://doi.org/10.7882/9780980327212
25 schema:datePublished 2013-03
26 schema:datePublishedReg 2013-03-01
27 schema:description Distance sampling is extensively used for estimating animal density or abundance. Conventional methods assume that location of line or point transects is random with respect to the animal population, yet transects are often placed along linear features such as roads, rivers or shorelines that do not randomly sample the study region, resulting in biased estimates of abundance. If it is possible to collect additional data that allow an animal density gradient with respect to the transects to be modelled, we show how to extend the conventional distance sampling likelihood to give asymptotically unbiased estimates of density for the covered area. We illustrate the proposed methods using data for a kangaroo population surveyed by line transects laid along tracks, for which the true density is known from an independent source, and the density gradient with respect to the tracks is estimated from a sample of GPS collared animals. For this example, density of animals increases with distance from the tracks, so that detection probability is overestimated and density underestimated if the non-random location of transects is ignored. When we account for the density gradient, there is no evidence of bias in the abundance estimate. We end with a list of practical recommendations to investigators conducting distance sampling surveys where density gradients could be an issue.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N7ec5d4c30f2341808b72fb789c85c281
32 N9464004d1fda4b33879b44e0631e7232
33 sg:journal.1043636
34 schema:name Accounting for animal density gradients using independent information in distance sampling surveys
35 schema:pagination 67-80
36 schema:productId N3ba805ce38e84abb8db57385efc085f9
37 N6108ae6ea1b544f3a16f6eb68f61d343
38 N6f9a6b2894b64b779669ed3e29edc2e5
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007101716
40 https://doi.org/10.1007/s10260-012-0223-2
41 schema:sdDatePublished 2019-04-10T20:00
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N661e6d3e855448d2abeb0fd9173a9fa6
44 schema:url http://link.springer.com/10.1007%2Fs10260-012-0223-2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N12f8d555400f4614a55e1e6aba9be712 rdf:first sg:person.01161337540.54
49 rdf:rest rdf:nil
50 N3ba805ce38e84abb8db57385efc085f9 schema:name readcube_id
51 schema:value 21d43f2829b70fee21262e8fe1243d33527fe8d2a769391d9385d4a283e34a88
52 rdf:type schema:PropertyValue
53 N4cc18cbf84834a2190428ccdbe01ff3c rdf:first sg:person.01363512236.78
54 rdf:rest N12f8d555400f4614a55e1e6aba9be712
55 N513d2a45b0114c4380dbe7797adb0f6d rdf:first sg:person.01325713462.52
56 rdf:rest N4cc18cbf84834a2190428ccdbe01ff3c
57 N6108ae6ea1b544f3a16f6eb68f61d343 schema:name doi
58 schema:value 10.1007/s10260-012-0223-2
59 rdf:type schema:PropertyValue
60 N661e6d3e855448d2abeb0fd9173a9fa6 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N6f9a6b2894b64b779669ed3e29edc2e5 schema:name dimensions_id
63 schema:value pub.1007101716
64 rdf:type schema:PropertyValue
65 N7ec5d4c30f2341808b72fb789c85c281 schema:volumeNumber 22
66 rdf:type schema:PublicationVolume
67 N9464004d1fda4b33879b44e0631e7232 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 Nc919e35639214425b23374cfba1d4927 rdf:first sg:person.01333700600.98
70 rdf:rest N513d2a45b0114c4380dbe7797adb0f6d
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1043636 schema:issn 1613-981X
78 1618-2510
79 schema:name Statistical Methods & Applications
80 rdf:type schema:Periodical
81 sg:person.01161337540.54 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
82 schema:familyName Howland
83 schema:givenName Brett
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161337540.54
85 rdf:type schema:Person
86 sg:person.01325713462.52 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
87 schema:familyName Buckland
88 schema:givenName Stephen T.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52
90 rdf:type schema:Person
91 sg:person.01333700600.98 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
92 schema:familyName Marques
93 schema:givenName Tiago A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333700600.98
95 rdf:type schema:Person
96 sg:person.01363512236.78 schema:affiliation https://www.grid.ac/institutes/grid.410954.d
97 schema:familyName Bispo
98 schema:givenName Regina
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363512236.78
100 rdf:type schema:Person
101 sg:pub.10.1007/s00227-007-0659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005606616
102 https://doi.org/10.1007/s00227-007-0659-3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10344-009-0309-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017297734
105 https://doi.org/10.1007/s10344-009-0309-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10344-010-0399-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042630076
108 https://doi.org/10.1007/s10344-010-0399-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11252-007-0032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051167534
111 https://doi.org/10.1007/s11252-007-0032-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s13253-010-0021-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023969123
114 https://doi.org/10.1007/s13253-010-0021-y
115 rdf:type schema:CreativeWork
116 sg:pub.10.1198/1085711043578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040307468
117 https://doi.org/10.1198/1085711043578
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/wsb.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044612127
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0006-3207(02)00117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043466548
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1071/ar03024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048838231
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/00222933.2011.589916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048034954
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.0006-341x.2003.00107.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030773137
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1365-2664.2009.01737.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031201629
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.1467-9876.2010.00748.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051817260
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1111/j.1541-0420.2008.01018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019532160
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/j.1541-0420.2009.01381.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029461495
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1748-7692.2004.tb01191.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000485885
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1642/0004-8038(2006)123[695:edporb]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068174721
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068174786
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2193/0091-7648(2005)33[745:ftftro]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006326898
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/2347618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983393
146 rdf:type schema:CreativeWork
147 https://doi.org/10.7882/9780980327212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103942338
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.1001.0 schema:alternateName Australian National University
150 schema:name Fenner School of Environment and Society, ANU College of Medicine, Biology & Environment, The Australian National University, Canberra, Australia
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
153 schema:name Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.410954.d schema:alternateName Instituto Universitário de Ciências Psicológicas, Sociais e da Vida
156 schema:name Bio3 - Estudos e Projectos em Biologia e Valorizaç ão de Recursos Naturais, Lda, Portugal
157 Centro de Estatística e Aplicações da Universidade de Lisboa, Lisboa, Portugal
158 ISPA, Instituto Universitário, Lisbon, Portugal
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.9983.b schema:alternateName University of Lisbon
161 schema:name Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
162 Centro de Estatística e Aplicações da Universidade de Lisboa, Lisboa, Portugal
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...