An empirical note about estimation and forecasting Latin American Forex returns volatility: the role of long memory and random level ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-26

AUTHORS

Gabriel Rodríguez, Junior A. Ojeda Cunya, José Carlos Gonzáles Tanaka

ABSTRACT

A set of RLS-type models with ARMA and ARFIMA dynamics is estimated and compared in a forecasting exercise with ARFIMA, GARCH and FIGARCH models. It is an extension of Rodríguez (N Am J Econ Financ 42:393–420, 2017) but using more countries and working with squared returns in the forecasting exercise. The estimation results show: (i) existence of RLS; (ii) measurement errors except in Chile and Colombia. Regarding the fractional parameter, the estimates are quite small indicating the possible absence of long memory with possible exceptions of Chile and Colombia. The forecast exercise using the 10% MCS of Hansen et al. (Econometrica 79:453–497, 2011) and the ratios of MSFE indicate absence of the RLS-ARFIMA models while RLS-ARMA models are selected. In general, the results of the estimations and forecasts indicate probable absence of long memory or its small magnitude, which would makes this characteristic not only unnecessary but also irrelevant to capture the variations of the low frequencies of the series. More... »

PAGES

1-17

References to SciGraph publications

Journal

TITLE

Portuguese Economic Journal

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10258-019-00156-1

DOI

http://dx.doi.org/10.1007/s10258-019-00156-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112390906


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pontifical Catholic University of Peru", 
          "id": "https://www.grid.ac/institutes/grid.440592.e", 
          "name": [
            "Department of Economics, Pontificia Universidad Cat\u00f3lica del Per\u00fa, Av. Universitaria 1801, Lima 32, Lima, Per\u00fa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez", 
        "givenName": "Gabriel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontifical Catholic University of Peru", 
          "id": "https://www.grid.ac/institutes/grid.440592.e", 
          "name": [
            "Department of Economics, Pontificia Universidad Cat\u00f3lica del Per\u00fa, Av. Universitaria 1801, Lima 32, Lima, Per\u00fa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ojeda Cunya", 
        "givenName": "Junior A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontifical Catholic University of Peru", 
          "id": "https://www.grid.ac/institutes/grid.440592.e", 
          "name": [
            "Department of Economics, Pontificia Universidad Cat\u00f3lica del Per\u00fa, Av. Universitaria 1801, Lima 32, Lima, Per\u00fa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1les Tanaka", 
        "givenName": "Jos\u00e9 Carlos", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000460306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbankfin.2003.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004837073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2013.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005411058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006841345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(95)01749-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007209822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036846.2016.1243214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009290992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jempfin.2003.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009437235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jempfin.2003.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014337958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(01)00073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/for.926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025280294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-5398(93)90006-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025353847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2012.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026768253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466600009713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026893962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3982/ecta5771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028726106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1765(98)00178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031837181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jempfin.2009.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035035209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rie.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037154070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17520843.2015.1088880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041419065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(94)01654-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041974985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2015.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042926595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09603107.2013.844323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043088466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rdf.2015.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044106099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(95)01732-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045918009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1765(02)00036-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046146427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001810100100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046206504", 
          "https://doi.org/10.1007/s001810100100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.1980.tb00297.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048224994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/68.1.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jbes.2009.06171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jbes.2010.09153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2017.1329591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090696769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.najef.2017.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091281282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470131466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470131466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661329"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-26", 
    "datePublishedReg": "2019-02-26", 
    "description": "A set of RLS-type models with ARMA and ARFIMA dynamics is estimated and compared in a forecasting exercise with ARFIMA, GARCH and FIGARCH models. It is an extension of Rodr\u00edguez (N Am J Econ Financ 42:393\u2013420, 2017) but using more countries and working with squared returns in the forecasting exercise. The estimation results show: (i) existence of RLS; (ii) measurement errors except in Chile and Colombia. Regarding the fractional parameter, the estimates are quite small indicating the possible absence of long memory with possible exceptions of Chile and Colombia. The forecast exercise using the 10% MCS of Hansen et al. (Econometrica 79:453\u2013497, 2011) and the ratios of MSFE indicate absence of the RLS-ARFIMA models while RLS-ARMA models are selected. In general, the results of the estimations and forecasts indicate probable absence of long memory or its small magnitude, which would makes this characteristic not only unnecessary but also irrelevant to capture the variations of the low frequencies of the series.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10258-019-00156-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136477", 
        "issn": [
          "1617-982X", 
          "1617-9838"
        ], 
        "name": "Portuguese Economic Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "An empirical note about estimation and forecasting Latin American Forex returns volatility: the role of long memory and random level shifts components", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b0347017dea16b38e2aa33176bd6bb156860e0502526616af2ed99f15186886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10258-019-00156-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112390906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10258-019-00156-1", 
      "https://app.dimensions.ai/details/publication/pub.1112390906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10258-019-00156-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10258-019-00156-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10258-019-00156-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10258-019-00156-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10258-019-00156-1'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      57 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10258-019-00156-1 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N4412287bbbbd4024a8c3f67a365acd84
4 schema:citation sg:pub.10.1007/s001810100100
5 https://doi.org/10.1002/9780470131466
6 https://doi.org/10.1002/for.926
7 https://doi.org/10.1002/jae.800
8 https://doi.org/10.1002/jae.976
9 https://doi.org/10.1016/0304-4076(94)01654-i
10 https://doi.org/10.1016/0304-4076(95)01732-1
11 https://doi.org/10.1016/0927-5398(93)90006-d
12 https://doi.org/10.1016/j.econmod.2012.06.038
13 https://doi.org/10.1016/j.ejor.2015.12.010
14 https://doi.org/10.1016/j.ijforecast.2013.12.012
15 https://doi.org/10.1016/j.jbankfin.2003.10.015
16 https://doi.org/10.1016/j.jeconom.2005.01.005
17 https://doi.org/10.1016/j.jempfin.2003.03.001
18 https://doi.org/10.1016/j.jempfin.2003.03.002
19 https://doi.org/10.1016/j.jempfin.2009.10.001
20 https://doi.org/10.1016/j.najef.2017.07.016
21 https://doi.org/10.1016/j.rdf.2015.11.002
22 https://doi.org/10.1016/j.rie.2015.12.001
23 https://doi.org/10.1016/s0165-1765(02)00036-8
24 https://doi.org/10.1016/s0165-1765(98)00178-5
25 https://doi.org/10.1016/s0304-4076(01)00073-2
26 https://doi.org/10.1016/s0304-4076(95)01749-6
27 https://doi.org/10.1017/s0266466600009713
28 https://doi.org/10.1080/00036846.2016.1243214
29 https://doi.org/10.1080/09603107.2013.844323
30 https://doi.org/10.1080/14697688.2017.1329591
31 https://doi.org/10.1080/17520843.2015.1088880
32 https://doi.org/10.1093/biomet/68.1.165
33 https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
34 https://doi.org/10.1198/jbes.2009.06171
35 https://doi.org/10.1198/jbes.2010.09153
36 https://doi.org/10.3982/ecta5771
37 schema:datePublished 2019-02-26
38 schema:datePublishedReg 2019-02-26
39 schema:description A set of RLS-type models with ARMA and ARFIMA dynamics is estimated and compared in a forecasting exercise with ARFIMA, GARCH and FIGARCH models. It is an extension of Rodríguez (N Am J Econ Financ 42:393–420, 2017) but using more countries and working with squared returns in the forecasting exercise. The estimation results show: (i) existence of RLS; (ii) measurement errors except in Chile and Colombia. Regarding the fractional parameter, the estimates are quite small indicating the possible absence of long memory with possible exceptions of Chile and Colombia. The forecast exercise using the 10% MCS of Hansen et al. (Econometrica 79:453–497, 2011) and the ratios of MSFE indicate absence of the RLS-ARFIMA models while RLS-ARMA models are selected. In general, the results of the estimations and forecasts indicate probable absence of long memory or its small magnitude, which would makes this characteristic not only unnecessary but also irrelevant to capture the variations of the low frequencies of the series.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1136477
44 schema:name An empirical note about estimation and forecasting Latin American Forex returns volatility: the role of long memory and random level shifts components
45 schema:pagination 1-17
46 schema:productId N4c251050a1a645ac8add694aae7e03ad
47 N6fc978124307491289909c755285f1d7
48 Nd5c9e32c9f854dc98178062ddb5f9060
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112390906
50 https://doi.org/10.1007/s10258-019-00156-1
51 schema:sdDatePublished 2019-04-11T09:50
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc725f909d2bd46e79e2a5e465aa08684
54 schema:url https://link.springer.com/10.1007%2Fs10258-019-00156-1
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N4412287bbbbd4024a8c3f67a365acd84 rdf:first Nf9a9140af7b6445fb52078b838216386
59 rdf:rest Nc728a53549e948368d7b0fd4bd948697
60 N4c251050a1a645ac8add694aae7e03ad schema:name dimensions_id
61 schema:value pub.1112390906
62 rdf:type schema:PropertyValue
63 N6fc978124307491289909c755285f1d7 schema:name readcube_id
64 schema:value 4b0347017dea16b38e2aa33176bd6bb156860e0502526616af2ed99f15186886
65 rdf:type schema:PropertyValue
66 Na65288a60f4f498faf607db15f906912 schema:affiliation https://www.grid.ac/institutes/grid.440592.e
67 schema:familyName Gonzáles Tanaka
68 schema:givenName José Carlos
69 rdf:type schema:Person
70 Nc725f909d2bd46e79e2a5e465aa08684 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nc728a53549e948368d7b0fd4bd948697 rdf:first Ne215b9c1d8974b9681afd3a0673ce7a6
73 rdf:rest Ndc7674cc6ba249409a0f125af3260c17
74 Nd5c9e32c9f854dc98178062ddb5f9060 schema:name doi
75 schema:value 10.1007/s10258-019-00156-1
76 rdf:type schema:PropertyValue
77 Ndc7674cc6ba249409a0f125af3260c17 rdf:first Na65288a60f4f498faf607db15f906912
78 rdf:rest rdf:nil
79 Ne215b9c1d8974b9681afd3a0673ce7a6 schema:affiliation https://www.grid.ac/institutes/grid.440592.e
80 schema:familyName Ojeda Cunya
81 schema:givenName Junior A.
82 rdf:type schema:Person
83 Nf9a9140af7b6445fb52078b838216386 schema:affiliation https://www.grid.ac/institutes/grid.440592.e
84 schema:familyName Rodríguez
85 schema:givenName Gabriel
86 rdf:type schema:Person
87 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
88 schema:name Economics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
91 schema:name Econometrics
92 rdf:type schema:DefinedTerm
93 sg:journal.1136477 schema:issn 1617-982X
94 1617-9838
95 schema:name Portuguese Economic Journal
96 rdf:type schema:Periodical
97 sg:pub.10.1007/s001810100100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046206504
98 https://doi.org/10.1007/s001810100100
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/9780470131466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661329
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/for.926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163189
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/jae.800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025280294
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/jae.976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006841345
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0304-4076(94)01654-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1041974985
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0304-4076(95)01732-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045918009
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0927-5398(93)90006-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353847
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.econmod.2012.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026768253
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ejor.2015.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042926595
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijforecast.2013.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005411058
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jbankfin.2003.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004837073
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jeconom.2005.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460306
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jempfin.2003.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009437235
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jempfin.2003.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014337958
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jempfin.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035035209
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.najef.2017.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091281282
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.rdf.2015.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044106099
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.rie.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037154070
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0165-1765(02)00036-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046146427
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0165-1765(98)00178-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031837181
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0304-4076(01)00073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382918
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0304-4076(95)01749-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007209822
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1017/s0266466600009713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026893962
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/00036846.2016.1243214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009290992
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/09603107.2013.844323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043088466
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/14697688.2017.1329591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090696769
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/17520843.2015.1088880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041419065
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/biomet/68.1.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419039
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1467-9892.1980.tb00297.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048224994
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1198/jbes.2009.06171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200824
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1198/jbes.2010.09153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200916
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3982/ecta5771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726106
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.440592.e schema:alternateName Pontifical Catholic University of Peru
165 schema:name Department of Economics, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Lima, Perú
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...