Ontology type: schema:ScholarlyArticle
2018-07
AUTHORSZhao Chen, Wei Liu, Christina Dan Wang, Wu-qing Wu, Yao-hua Wu
ABSTRACTThis paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration (Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results. More... »
PAGES516-533
http://scigraph.springernature.com/pub.10.1007/s10255-018-0766-6
DOIhttp://dx.doi.org/10.1007/s10255-018-0766-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1106058898
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fudan University",
"id": "https://www.grid.ac/institutes/grid.8547.e",
"name": [
"School of Data Science, Fudan University, 200433, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhao",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Academy of Mathematics and Systems Science",
"id": "https://www.grid.ac/institutes/grid.458463.8",
"name": [
"Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Wei",
"type": "Person"
},
{
"affiliation": {
"alternateName": "New York University Shanghai",
"id": "https://www.grid.ac/institutes/grid.449457.f",
"name": [
"New York University Shanghai, 200122, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Christina Dan",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Renmin University of China",
"id": "https://www.grid.ac/institutes/grid.24539.39",
"name": [
"School of Business, Renmin University of China, 100872, Beijing, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Wu-qing",
"id": "sg:person.01252562703.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252562703.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Science and Technology of China",
"id": "https://www.grid.ac/institutes/grid.59053.3a",
"name": [
"Department of Statistics and Finance, University of Science and Technology of China, 230026, Hefei, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Yao-hua",
"id": "sg:person.014201140571.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201140571.08"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1005740473",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3381-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005740473",
"https://doi.org/10.1007/978-1-4757-3381-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3381-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005740473",
"https://doi.org/10.1007/978-1-4757-3381-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07474938608800099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026558075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0304-4076(01)00063-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026686184"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07474938608800097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045303413"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2999632",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070163414"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/20076257",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102828621"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/9780470316962",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109489376"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109489376",
"type": "CreativeWork"
}
],
"datePublished": "2018-07",
"datePublishedReg": "2018-07-01",
"description": "This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration (Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10255-018-0766-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041650",
"issn": [
"0168-9673",
"1618-3932"
],
"name": "Acta Mathematicae Applicatae Sinica, English Series",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "34"
}
],
"name": "Nonlinear Least Squares Estimation of Log-ACD Models",
"pagination": "516-533",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"a898ba479b288da5c419deb2176172e264d12d220196e973152c5bf53d90acdf"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10255-018-0766-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1106058898"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10255-018-0766-6",
"https://app.dimensions.ai/details/publication/pub.1106058898"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000005.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10255-018-0766-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10255-018-0766-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10255-018-0766-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10255-018-0766-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10255-018-0766-6'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
21 PREDICATES
36 URIs
19 LITERALS
7 BLANK NODES