Moduli spaces of local systems and higher Teichmüller theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-06

AUTHORS

Vladimir Fock, Alexander Goncharov

ABSTRACT

Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm. More... »

PAGES

1-211

References to SciGraph publications

  • 2003-10. Cluster algebras II: Finite type classification in INVENTIONES MATHEMATICAE
  • 2001-01. Tensor product multiplicities, canonical bases and totally positive varieties in INVENTIONES MATHEMATICAE
  • 1986-02. The virtual cohomological dimension of the mapping class group of an orientable surface in INVENTIONES MATHEMATICAE
  • 1993. Formal (Non)-Commutative Symplectic Geometry in THE GELFAND MATHEMATICAL SEMINARS, 1990–1992
  • 1970. Equations Différentielles à Points Singuliers Réguliers in NONE
  • 1952-12. A reduction theorem for totally positive matrices in JOURNAL D'ANALYSE MATHÉMATIQUE
  • 1998-01. Quantization of Teichmüller Spaces and the Quantum Dilogarithm in LETTERS IN MATHEMATICAL PHYSICS
  • 1987-06. The decorated Teichmüller space of punctured surfaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999. Flows on 2-dimensional Manifolds, An Overview in NONE
  • 1984. Quadratic Differentials in NONE
  • 1930-12. Über variationsvermindernde lineare Transformationen in MATHEMATISCHE ZEITSCHRIFT
  • 2001-12. Central extensions of reductive groups by K2 in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10240-006-0039-4

    DOI

    http://dx.doi.org/10.1007/s10240-006-0039-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039798950


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical and Experimental Physics", 
              "id": "https://www.grid.ac/institutes/grid.21626.31", 
              "name": [
                "ITEP, B. Cheremushkinskaya 25, 117259, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fock", 
            "givenName": "Vladimir", 
            "id": "sg:person.014117535013.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014117535013.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brown University", 
              "id": "https://www.grid.ac/institutes/grid.40263.33", 
              "name": [
                "Department of Mathematics, Brown University, 02912, Providence, RI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goncharov", 
            "givenName": "Alexander", 
            "id": "sg:person.01072446050.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072446050.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002220000102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000337421", 
              "https://doi.org/10.1007/s002220000102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0345-2_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002122034", 
              "https://doi.org/10.1007/978-1-4612-0345-2_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0345-2_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002122034", 
              "https://doi.org/10.1007/978-1-4612-0345-2_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-55.1.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015488128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015637196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1996.0057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016599282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1988-0944577-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018955937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01388737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019342889", 
              "https://doi.org/10.1007/bf01388737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007460128279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020216318", 
              "https://doi.org/10.1023/a:1007460128279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0061194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024795108", 
              "https://doi.org/10.1007/bfb0061194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0061194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024795108", 
              "https://doi.org/10.1007/bfb0061194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02414-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027811290", 
              "https://doi.org/10.1007/978-3-662-02414-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02414-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027811290", 
              "https://doi.org/10.1007/978-3-662-02414-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-98-00248-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035290240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02786969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035632387", 
              "https://doi.org/10.1007/bf02786969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02786969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035632387", 
              "https://doi.org/10.1007/bf02786969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-97-01870-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036493714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-99-00295-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037489853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0010437x03000125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039671341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01194637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043730429", 
              "https://doi.org/10.1007/bf01194637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1995.1045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044649161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1045154647", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045154647", 
              "https://doi.org/10.1007/bfb0093599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045154647", 
              "https://doi.org/10.1007/bfb0093599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10240-001-8192-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045753928", 
              "https://doi.org/10.1007/s10240-001-8192-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047039592", 
              "https://doi.org/10.1007/bf01223515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047039592", 
              "https://doi.org/10.1007/bf01223515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-55.1.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048378410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-003-0302-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048643395", 
              "https://doi.org/10.1007/s00222-003-0302-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-003-0302-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048643395", 
              "https://doi.org/10.1007/s00222-003-0302-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1933-05610-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050578775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-04-12611-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-93-07209-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/sdg.2003.v8.n1.a13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072463891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214442469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214444635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214448257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459902"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-06", 
        "datePublishedReg": "2006-06-01", 
        "description": "Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichm\u00fcller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil\u2013Petersson form for one of these spaces. It is related to the motivic dilogarithm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10240-006-0039-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136472", 
            "issn": [
              "0073-8301", 
              "1618-1913"
            ], 
            "name": "Publications math\u00e9matiques de l'IH\u00c9S", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "103"
          }
        ], 
        "name": "Moduli spaces of local systems and higher Teichm\u00fcller theory", 
        "pagination": "1-211", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd95e6698a8cb9563751f06ac5f42dd3543a35ced7e9a8f2564d9e1727c4068c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10240-006-0039-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039798950"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10240-006-0039-4", 
          "https://app.dimensions.ai/details/publication/pub.1039798950"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10240-006-0039-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10240-006-0039-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10240-006-0039-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10240-006-0039-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10240-006-0039-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10240-006-0039-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb186b87039594f4695ca00751e2ae613
    4 schema:citation sg:pub.10.1007/978-1-4612-0345-2_11
    5 sg:pub.10.1007/978-3-662-02414-0
    6 sg:pub.10.1007/bf01194637
    7 sg:pub.10.1007/bf01223515
    8 sg:pub.10.1007/bf01388737
    9 sg:pub.10.1007/bf02786969
    10 sg:pub.10.1007/bfb0061194
    11 sg:pub.10.1007/bfb0093599
    12 sg:pub.10.1007/s00222-003-0302-y
    13 sg:pub.10.1007/s002220000102
    14 sg:pub.10.1007/s10240-001-8192-2
    15 sg:pub.10.1023/a:1007460128279
    16 https://app.dimensions.ai/details/publication/pub.1045154647
    17 https://doi.org/10.1006/aima.1995.1045
    18 https://doi.org/10.1006/aima.1996.0057
    19 https://doi.org/10.1090/s0002-9904-1933-05610-0
    20 https://doi.org/10.1090/s0002-9947-97-01870-9
    21 https://doi.org/10.1090/s0894-0347-1988-0944577-9
    22 https://doi.org/10.1090/s0894-0347-98-00248-3
    23 https://doi.org/10.1090/s0894-0347-99-00295-7
    24 https://doi.org/10.1112/plms/s3-55.1.127
    25 https://doi.org/10.1112/plms/s3-55.1.59
    26 https://doi.org/10.1112/s0010437x03000125
    27 https://doi.org/10.1215/s0012-7094-04-12611-9
    28 https://doi.org/10.1215/s0012-7094-93-07209-2
    29 https://doi.org/10.1515/9781400882458
    30 https://doi.org/10.2307/1970638
    31 https://doi.org/10.4310/jdg/1214442469
    32 https://doi.org/10.4310/jdg/1214444635
    33 https://doi.org/10.4310/jdg/1214448257
    34 https://doi.org/10.4310/sdg.2003.v8.n1.a13
    35 schema:datePublished 2006-06
    36 schema:datePublishedReg 2006-06-01
    37 schema:description Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely related to the moduli spaces of G-local systems on S. We show that they carry a lot of interesting structures. In particular we define a distinguished collection of coordinate systems, equivariant under the action of the mapping class group of S. We prove that their transition functions are subtraction free. Thus we have positive structures on these moduli spaces. Therefore we can take their points with values in any positive semifield. Their positive real points provide the two higher Teichmüller spaces related to G and S, while the points with values in the tropical semifields provide the lamination spaces. We define the motivic avatar of the Weil–Petersson form for one of these spaces. It is related to the motivic dilogarithm.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf Nc6d48ea001dc41bda3bd41d2d685815a
    42 Nfd7bd2543ebc4d5ca846db37a41039cf
    43 sg:journal.1136472
    44 schema:name Moduli spaces of local systems and higher Teichmüller theory
    45 schema:pagination 1-211
    46 schema:productId N5cd15e83d68349e2845aa45906f74a6d
    47 Ndcfb736267674f879dea9e6463bd287a
    48 Neb382d62372649a7974de409d052a9e1
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039798950
    50 https://doi.org/10.1007/s10240-006-0039-4
    51 schema:sdDatePublished 2019-04-11T01:54
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N6d4c5b76a7924487ab04a3527c5127db
    54 schema:url http://link.springer.com/10.1007/s10240-006-0039-4
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N401423b1fdad4325a20a77450a175748 rdf:first sg:person.01072446050.70
    59 rdf:rest rdf:nil
    60 N5cd15e83d68349e2845aa45906f74a6d schema:name dimensions_id
    61 schema:value pub.1039798950
    62 rdf:type schema:PropertyValue
    63 N6d4c5b76a7924487ab04a3527c5127db schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nb186b87039594f4695ca00751e2ae613 rdf:first sg:person.014117535013.95
    66 rdf:rest N401423b1fdad4325a20a77450a175748
    67 Nc6d48ea001dc41bda3bd41d2d685815a schema:issueNumber 1
    68 rdf:type schema:PublicationIssue
    69 Ndcfb736267674f879dea9e6463bd287a schema:name readcube_id
    70 schema:value bd95e6698a8cb9563751f06ac5f42dd3543a35ced7e9a8f2564d9e1727c4068c
    71 rdf:type schema:PropertyValue
    72 Neb382d62372649a7974de409d052a9e1 schema:name doi
    73 schema:value 10.1007/s10240-006-0039-4
    74 rdf:type schema:PropertyValue
    75 Nfd7bd2543ebc4d5ca846db37a41039cf schema:volumeNumber 103
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136472 schema:issn 0073-8301
    84 1618-1913
    85 schema:name Publications mathématiques de l'IHÉS
    86 rdf:type schema:Periodical
    87 sg:person.01072446050.70 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
    88 schema:familyName Goncharov
    89 schema:givenName Alexander
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072446050.70
    91 rdf:type schema:Person
    92 sg:person.014117535013.95 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
    93 schema:familyName Fock
    94 schema:givenName Vladimir
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014117535013.95
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-1-4612-0345-2_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002122034
    98 https://doi.org/10.1007/978-1-4612-0345-2_11
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-662-02414-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027811290
    101 https://doi.org/10.1007/978-3-662-02414-0
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf01194637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043730429
    104 https://doi.org/10.1007/bf01194637
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf01223515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047039592
    107 https://doi.org/10.1007/bf01223515
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf01388737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019342889
    110 https://doi.org/10.1007/bf01388737
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf02786969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035632387
    113 https://doi.org/10.1007/bf02786969
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bfb0061194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024795108
    116 https://doi.org/10.1007/bfb0061194
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bfb0093599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045154647
    119 https://doi.org/10.1007/bfb0093599
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00222-003-0302-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643395
    122 https://doi.org/10.1007/s00222-003-0302-y
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s002220000102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000337421
    125 https://doi.org/10.1007/s002220000102
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10240-001-8192-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045753928
    128 https://doi.org/10.1007/s10240-001-8192-2
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/a:1007460128279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020216318
    131 https://doi.org/10.1023/a:1007460128279
    132 rdf:type schema:CreativeWork
    133 https://app.dimensions.ai/details/publication/pub.1045154647 schema:CreativeWork
    134 https://doi.org/10.1006/aima.1995.1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044649161
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1006/aima.1996.0057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016599282
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1090/s0002-9904-1933-05610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050578775
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1090/s0002-9947-97-01870-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036493714
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1090/s0894-0347-1988-0944577-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018955937
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1090/s0894-0347-98-00248-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035290240
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1090/s0894-0347-99-00295-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037489853
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1112/plms/s3-55.1.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015488128
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1112/plms/s3-55.1.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378410
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1112/s0010437x03000125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039671341
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1215/s0012-7094-04-12611-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415489
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1215/s0012-7094-93-07209-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419908
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1515/9781400882458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015637196
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2307/1970638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675955
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.4310/jdg/1214442469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459669
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.4310/jdg/1214444635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459774
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.4310/jdg/1214448257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459902
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.4310/sdg.2003.v8.n1.a13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072463891
    169 rdf:type schema:CreativeWork
    170 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
    171 schema:name ITEP, B. Cheremushkinskaya 25, 117259, Moscow, Russia
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
    174 schema:name Department of Mathematics, Brown University, 02912, Providence, RI, USA
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...