Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Matteo Bianchi, Gil Marom, Ram P. Ghosh, Oren M. Rotman, Puja Parikh, Luis Gruberg, Danny Bluestein

ABSTRACT

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications. More... »

PAGES

435-451

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10237-018-1094-8

DOI

http://dx.doi.org/10.1007/s10237-018-1094-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110063214

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30460623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bianchi", 
        "givenName": "Matteo", 
        "id": "sg:person.01113570511.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113570511.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA", 
            "School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marom", 
        "givenName": "Gil", 
        "id": "sg:person.01116574717.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116574717.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Ram P.", 
        "id": "sg:person.01161703711.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161703711.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotman", 
        "givenName": "Oren M.", 
        "id": "sg:person.0634034256.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634034256.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412695.d", 
          "name": [
            "Division of Cardiovascular Diseases, Stony Brook University Hospital, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parikh", 
        "givenName": "Puja", 
        "id": "sg:person.0742674571.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742674571.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Shore Long Island Jewish Health System", 
          "id": "https://www.grid.ac/institutes/grid.416477.7", 
          "name": [
            "Division of Cardiology, Southside Hospital, Northwell Health, Bay Shore, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruberg", 
        "givenName": "Luis", 
        "id": "sg:person.01254035537.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254035537.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bluestein", 
        "givenName": "Danny", 
        "id": "sg:person.01051522465.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051522465.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jacc.2015.04.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000138986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-012-0864-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000354735", 
          "https://doi.org/10.1007/s11517-012-0864-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-014-0583-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001041719", 
          "https://doi.org/10.1007/s10237-014-0583-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-014-0583-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001041719", 
          "https://doi.org/10.1007/s10237-014-0583-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0153755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002966163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2012.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004138291", 
          "https://doi.org/10.1038/nrcardio.2012.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2016.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005409058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2012.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008850707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2014.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009706838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2012.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010844033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ccd.23003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011902930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2012.08.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013414971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644409810231880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013729617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021824769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2015.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejcts.2010.08.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028102303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3188-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029187901", 
          "https://doi.org/10.1007/s00330-014-3188-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029494114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1103510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030251116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2012.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030682339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0694-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033677602", 
          "https://doi.org/10.1007/s10439-012-0694-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00392-012-0434-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033698231", 
          "https://doi.org/10.1007/s00392-012-0434-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1200384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033849169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.002947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034994991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.002947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034994991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aor.12806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036799827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1514616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037956263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038449410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2010.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042329315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.108.837807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042659934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2016.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043375100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/17434440.2016.1133283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043385507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2015.10.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043753329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2016.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048044366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2016.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048809818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.34099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048998375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0032463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050188140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2012.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051031466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcin.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051180863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehu410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051420103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053155042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059576945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059576945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4026254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062151570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4244/eijv11i9a212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072398640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2305-5839.2014.05.04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078991273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4330/wjc.v9.i2.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084461367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4330/wjc.v9.i2.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084461367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2017.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085196741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219876218420070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219876218420070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101112225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101112225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2018.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101112225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mayocp.2018.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101886335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ccd.27643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103780714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtcvs.2018.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104369749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4040457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105736426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11886-018-1026-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106080900", 
          "https://doi.org/10.1007/s11886-018-1026-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-018-1069-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106251093", 
          "https://doi.org/10.1007/s10237-018-1069-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10237-018-1094-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7753480", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6618438", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2690422", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030355", 
        "issn": [
          "1617-7959", 
          "1617-7940"
        ], 
        "name": "Biomechanics and Modeling in Mechanobiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage", 
    "pagination": "435-451", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82675de04bc8120ff8f265bd6b76e68dd558f49d03705638fae4843727c4d014"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30460623"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101135325"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10237-018-1094-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110063214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10237-018-1094-8", 
      "https://app.dimensions.ai/details/publication/pub.1110063214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10237-018-1094-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10237-018-1094-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10237-018-1094-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10237-018-1094-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10237-018-1094-8'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10237-018-1094-8 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nd5667e7162424fe681bea6d541a4df77
4 schema:citation sg:pub.10.1007/s00330-014-3188-8
5 sg:pub.10.1007/s00392-012-0434-4
6 sg:pub.10.1007/s10237-014-0583-7
7 sg:pub.10.1007/s10237-018-1069-9
8 sg:pub.10.1007/s10439-012-0694-1
9 sg:pub.10.1007/s11517-012-0864-1
10 sg:pub.10.1007/s11886-018-1026-3
11 sg:pub.10.1038/nrcardio.2012.58
12 https://doi.org/10.1002/ccd.23003
13 https://doi.org/10.1002/ccd.27643
14 https://doi.org/10.1002/jbm.a.34099
15 https://doi.org/10.1016/j.ejcts.2010.08.056
16 https://doi.org/10.1016/j.jacc.2012.08.1039
17 https://doi.org/10.1016/j.jacc.2015.04.085
18 https://doi.org/10.1016/j.jbiomech.2010.04.020
19 https://doi.org/10.1016/j.jbiomech.2012.07.017
20 https://doi.org/10.1016/j.jbiomech.2014.06.007
21 https://doi.org/10.1016/j.jbiomech.2015.07.031
22 https://doi.org/10.1016/j.jbiomech.2015.10.048
23 https://doi.org/10.1016/j.jbiomech.2016.03.036
24 https://doi.org/10.1016/j.jbiomech.2016.06.024
25 https://doi.org/10.1016/j.jbiomech.2016.12.031
26 https://doi.org/10.1016/j.jbiomech.2017.04.020
27 https://doi.org/10.1016/j.jbiomech.2018.02.017
28 https://doi.org/10.1016/j.jcin.2012.02.010
29 https://doi.org/10.1016/j.jcin.2012.03.004
30 https://doi.org/10.1016/j.jcin.2012.03.005
31 https://doi.org/10.1016/j.jcin.2012.11.014
32 https://doi.org/10.1016/j.jcin.2014.07.020
33 https://doi.org/10.1016/j.jcin.2015.02.005
34 https://doi.org/10.1016/j.jcin.2016.01.003
35 https://doi.org/10.1016/j.jcmg.2015.01.008
36 https://doi.org/10.1016/j.jtcvs.2018.05.042
37 https://doi.org/10.1016/j.mayocp.2018.01.020
38 https://doi.org/10.1016/j.medengphy.2012.04.009
39 https://doi.org/10.1016/j.neuroimage.2006.01.015
40 https://doi.org/10.1056/nejmoa1103510
41 https://doi.org/10.1056/nejmoa1200384
42 https://doi.org/10.1056/nejmoa1514616
43 https://doi.org/10.1093/eurheartj/ehu410
44 https://doi.org/10.1093/eurheartj/ehw115
45 https://doi.org/10.1108/02644409810231880
46 https://doi.org/10.1111/aor.12806
47 https://doi.org/10.1115/1.4026254
48 https://doi.org/10.1115/1.4040457
49 https://doi.org/10.1142/s0219876218420070
50 https://doi.org/10.1161/circulationaha.108.837807
51 https://doi.org/10.1161/circulationaha.113.002947
52 https://doi.org/10.1371/journal.pone.0032463
53 https://doi.org/10.1371/journal.pone.0153755
54 https://doi.org/10.1586/17434440.2016.1133283
55 https://doi.org/10.3978/j.issn.2305-5839.2014.05.04
56 https://doi.org/10.4244/eijv11i9a212
57 https://doi.org/10.4330/wjc.v9.i2.196
58 schema:datePublished 2019-04
59 schema:datePublishedReg 2019-04-01
60 schema:description Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf Nb9379572641446e1b360ca0128ff284a
65 Nf7b23e23ff044be1b99d155757860078
66 sg:journal.1030355
67 schema:name Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage
68 schema:pagination 435-451
69 schema:productId N1e5cba51b56845d5a7cdb2af2c6a0ddf
70 N73b2d7428fc5448c956f210b5c2b23c9
71 N851fd387eb384183aa75820a8907c508
72 Nd2dc0010450f4151b665ea6f5b205487
73 Nf8eb5a37469f4b5a879ba1c501e9899d
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110063214
75 https://doi.org/10.1007/s10237-018-1094-8
76 schema:sdDatePublished 2019-04-11T13:19
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N6134b50ef8db48cf877664dce9ba1247
79 schema:url https://link.springer.com/10.1007%2Fs10237-018-1094-8
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1e5cba51b56845d5a7cdb2af2c6a0ddf schema:name nlm_unique_id
84 schema:value 101135325
85 rdf:type schema:PropertyValue
86 N6134b50ef8db48cf877664dce9ba1247 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N62895f7d955d43959c378a2738f8164f rdf:first sg:person.0742674571.53
89 rdf:rest N9c4487f7560244a29e5fc4b262ec7fc7
90 N73b2d7428fc5448c956f210b5c2b23c9 schema:name dimensions_id
91 schema:value pub.1110063214
92 rdf:type schema:PropertyValue
93 N851fd387eb384183aa75820a8907c508 schema:name readcube_id
94 schema:value 82675de04bc8120ff8f265bd6b76e68dd558f49d03705638fae4843727c4d014
95 rdf:type schema:PropertyValue
96 N9c4487f7560244a29e5fc4b262ec7fc7 rdf:first sg:person.01254035537.27
97 rdf:rest Nd158f5238a7f43749930f2acef17d348
98 Nb30fb054ecd64f52aab8cc65e8e54780 rdf:first sg:person.01116574717.20
99 rdf:rest Nc55de50c5c034368b73428287773e756
100 Nb9379572641446e1b360ca0128ff284a schema:issueNumber 2
101 rdf:type schema:PublicationIssue
102 Nc55de50c5c034368b73428287773e756 rdf:first sg:person.01161703711.86
103 rdf:rest Nf37192ef938149a880031c797d5c321a
104 Nd158f5238a7f43749930f2acef17d348 rdf:first sg:person.01051522465.54
105 rdf:rest rdf:nil
106 Nd2dc0010450f4151b665ea6f5b205487 schema:name doi
107 schema:value 10.1007/s10237-018-1094-8
108 rdf:type schema:PropertyValue
109 Nd5667e7162424fe681bea6d541a4df77 rdf:first sg:person.01113570511.37
110 rdf:rest Nb30fb054ecd64f52aab8cc65e8e54780
111 Nf37192ef938149a880031c797d5c321a rdf:first sg:person.0634034256.06
112 rdf:rest N62895f7d955d43959c378a2738f8164f
113 Nf7b23e23ff044be1b99d155757860078 schema:volumeNumber 18
114 rdf:type schema:PublicationVolume
115 Nf8eb5a37469f4b5a879ba1c501e9899d schema:name pubmed_id
116 schema:value 30460623
117 rdf:type schema:PropertyValue
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biomedical Engineering
123 rdf:type schema:DefinedTerm
124 sg:grant.2690422 http://pending.schema.org/fundedItem sg:pub.10.1007/s10237-018-1094-8
125 rdf:type schema:MonetaryGrant
126 sg:grant.6618438 http://pending.schema.org/fundedItem sg:pub.10.1007/s10237-018-1094-8
127 rdf:type schema:MonetaryGrant
128 sg:grant.7753480 http://pending.schema.org/fundedItem sg:pub.10.1007/s10237-018-1094-8
129 rdf:type schema:MonetaryGrant
130 sg:journal.1030355 schema:issn 1617-7940
131 1617-7959
132 schema:name Biomechanics and Modeling in Mechanobiology
133 rdf:type schema:Periodical
134 sg:person.01051522465.54 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
135 schema:familyName Bluestein
136 schema:givenName Danny
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051522465.54
138 rdf:type schema:Person
139 sg:person.01113570511.37 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
140 schema:familyName Bianchi
141 schema:givenName Matteo
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113570511.37
143 rdf:type schema:Person
144 sg:person.01116574717.20 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
145 schema:familyName Marom
146 schema:givenName Gil
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116574717.20
148 rdf:type schema:Person
149 sg:person.01161703711.86 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
150 schema:familyName Ghosh
151 schema:givenName Ram P.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161703711.86
153 rdf:type schema:Person
154 sg:person.01254035537.27 schema:affiliation https://www.grid.ac/institutes/grid.416477.7
155 schema:familyName Gruberg
156 schema:givenName Luis
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254035537.27
158 rdf:type schema:Person
159 sg:person.0634034256.06 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
160 schema:familyName Rotman
161 schema:givenName Oren M.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634034256.06
163 rdf:type schema:Person
164 sg:person.0742674571.53 schema:affiliation https://www.grid.ac/institutes/grid.412695.d
165 schema:familyName Parikh
166 schema:givenName Puja
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742674571.53
168 rdf:type schema:Person
169 sg:pub.10.1007/s00330-014-3188-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029187901
170 https://doi.org/10.1007/s00330-014-3188-8
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00392-012-0434-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698231
173 https://doi.org/10.1007/s00392-012-0434-4
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10237-014-0583-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001041719
176 https://doi.org/10.1007/s10237-014-0583-7
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10237-018-1069-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106251093
179 https://doi.org/10.1007/s10237-018-1069-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10439-012-0694-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033677602
182 https://doi.org/10.1007/s10439-012-0694-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11517-012-0864-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000354735
185 https://doi.org/10.1007/s11517-012-0864-1
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s11886-018-1026-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106080900
188 https://doi.org/10.1007/s11886-018-1026-3
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nrcardio.2012.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004138291
191 https://doi.org/10.1038/nrcardio.2012.58
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/ccd.23003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011902930
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/ccd.27643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103780714
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/jbm.a.34099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048998375
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ejcts.2010.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028102303
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jacc.2012.08.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013414971
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jacc.2015.04.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000138986
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jbiomech.2010.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042329315
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jbiomech.2012.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051031466
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.jbiomech.2014.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706838
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jbiomech.2015.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026547444
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.jbiomech.2015.10.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043753329
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.jbiomech.2016.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043375100
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.jbiomech.2016.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005409058
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jbiomech.2016.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048809818
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.jbiomech.2017.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085196741
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.jbiomech.2018.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101112225
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.jcin.2012.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008850707
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.jcin.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051180863
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.jcin.2012.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010844033
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jcin.2012.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030682339
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.jcin.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021824769
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.jcin.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029494114
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.jcin.2016.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048044366
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.jcmg.2015.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038449410
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.jtcvs.2018.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104369749
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.mayocp.2018.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101886335
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.medengphy.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053155042
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.neuroimage.2006.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466943
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1056/nejmoa1103510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030251116
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1056/nejmoa1200384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033849169
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1056/nejmoa1514616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037956263
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/eurheartj/ehu410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051420103
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/eurheartj/ehw115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059576945
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1108/02644409810231880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013729617
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/aor.12806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036799827
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1115/1.4026254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062151570
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1115/1.4040457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105736426
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1142/s0219876218420070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100580517
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/circulationaha.108.837807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042659934
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1161/circulationaha.113.002947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034994991
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pone.0032463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050188140
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1371/journal.pone.0153755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002966163
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1586/17434440.2016.1133283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385507
278 rdf:type schema:CreativeWork
279 https://doi.org/10.3978/j.issn.2305-5839.2014.05.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078991273
280 rdf:type schema:CreativeWork
281 https://doi.org/10.4244/eijv11i9a212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072398640
282 rdf:type schema:CreativeWork
283 https://doi.org/10.4330/wjc.v9.i2.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084461367
284 rdf:type schema:CreativeWork
285 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
286 schema:name Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA
287 School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
290 schema:name Department of Biomedical Engineering, Stony Brook University, T15-090 Health Sciences Center, 11794-8151, Stony Brook, NY, USA
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.412695.d schema:alternateName Stony Brook University Hospital
293 schema:name Division of Cardiovascular Diseases, Stony Brook University Hospital, Stony Brook, NY, USA
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.416477.7 schema:alternateName North Shore Long Island Jewish Health System
296 schema:name Division of Cardiology, Southside Hospital, Northwell Health, Bay Shore, NY, USA
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...