Semilinear elliptic problems with combined nonlinearities on the boundary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-01

AUTHORS

Marcelo F. Furtado, Ricardo Ruviaro, Edcarlos D. Silva

ABSTRACT

We prove the existence of two solutions for some elliptic equations with combined indefinite nonlinearities on the boundary. The main novelty is to consider variational methods together with a suitable split of the Sobolev space W1,2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,2}(\Omega )$$\end{document}.

PAGES

1887-1901

References to SciGraph publications

  • 2001. Elliptic Partial Differential Equations of Second Order in NONE
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2009-06-19. A weighted eigenvalue problem for the p-Laplacian plus a potential in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 2013-12-18. An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 2009-12-23. Variational methods for nonlinear Steklov eigenvalue problems with an indefinite weight function in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2011-10-12. Multiple variational solutions to nonlinear Steklov problems in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 1993-10. On semilinear elliptic equations with indefinite nonlinearities in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1995-12. Variational methods for indefinite superlinear homogeneous elliptic problems in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 1972. Non-Homogeneous Boundary Value Problems and Applications, Vol. 1 in NONE
  • 2012-06-26. A weighted eigencurve for Steklov problems with a potential in NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS NODEA
  • 2014-01-15. Landesman-lazer type conditions and multiplicity results for nonlinear elliptic problems with neumann boundary values in ACTA MATHEMATICA SINICA, ENGLISH SERIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10231-017-0645-4

    DOI

    http://dx.doi.org/10.1007/s10231-017-0645-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084024135


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de Matem\u00e1tica, Universidade de Bras\u00edlia, 70910-900, Bras\u00edlia, DF, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.7632.0", 
              "name": [
                "Departamento de Matem\u00e1tica, Universidade de Bras\u00edlia, 70910-900, Bras\u00edlia, DF, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furtado", 
            "givenName": "Marcelo F.", 
            "id": "sg:person.013642761177.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642761177.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de Matem\u00e1tica, Universidade de Bras\u00edlia, 70910-900, Bras\u00edlia, DF, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.7632.0", 
              "name": [
                "Departamento de Matem\u00e1tica, Universidade de Bras\u00edlia, 70910-900, Bras\u00edlia, DF, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruviaro", 
            "givenName": "Ricardo", 
            "id": "sg:person.014763527065.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763527065.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Matem\u00e1tica, Universidade Federal de Goi\u00e1s, 74000-000, Goi\u00e2nia, GO, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.411195.9", 
              "name": [
                "Instituto de Matem\u00e1tica, Universidade Federal de Goi\u00e1s, 74000-000, Goi\u00e2nia, GO, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Edcarlos D.", 
            "id": "sg:person.07571001245.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571001245.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00030-011-0136-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029935314", 
              "https://doi.org/10.1007/s00030-011-0136-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65161-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010968636", 
              "https://doi.org/10.1007/978-3-642-65161-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004709822", 
              "https://doi.org/10.1007/bf01206962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-009-0300-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035873492", 
              "https://doi.org/10.1007/s00526-009-0300-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-70914-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024035369", 
              "https://doi.org/10.1007/978-0-387-70914-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00030-013-0256-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030135026", 
              "https://doi.org/10.1007/s00030-013-0256-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01210623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009039369", 
              "https://doi.org/10.1007/bf01210623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00030-012-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039705775", 
              "https://doi.org/10.1007/s00030-012-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61798-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011077577", 
              "https://doi.org/10.1007/978-3-642-61798-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00030-009-0026-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017179884", 
              "https://doi.org/10.1007/s00030-009-0026-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10114-014-2750-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039519281", 
              "https://doi.org/10.1007/s10114-014-2750-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-01", 
        "datePublishedReg": "2017-03-01", 
        "description": "We prove the existence of two solutions for some elliptic equations with combined indefinite nonlinearities on the boundary. The main novelty is to consider variational methods together with a suitable split of the Sobolev space W1,2(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$W^{1,2}(\\Omega )$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10231-017-0645-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136275", 
            "issn": [
              "0373-3114", 
              "1618-1891"
            ], 
            "name": "Annali di Matematica Pura ed Applicata (1923 -)", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "196"
          }
        ], 
        "keywords": [
          "semilinear elliptic problem", 
          "elliptic equations", 
          "elliptic problems", 
          "Sobolev spaces", 
          "variational method", 
          "suitable split", 
          "indefinite nonlinearity", 
          "main novelty", 
          "nonlinearity", 
          "equations", 
          "boundaries", 
          "space", 
          "existence", 
          "problem", 
          "solution", 
          "novelty", 
          "split", 
          "method"
        ], 
        "name": "Semilinear elliptic problems with combined nonlinearities on the boundary", 
        "pagination": "1887-1901", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084024135"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10231-017-0645-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10231-017-0645-4", 
          "https://app.dimensions.ai/details/publication/pub.1084024135"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_744.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10231-017-0645-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10231-017-0645-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10231-017-0645-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10231-017-0645-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10231-017-0645-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      53 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10231-017-0645-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4206d25b298349338b80bb9a04008b4a
    4 schema:citation sg:pub.10.1007/978-0-387-70914-7
    5 sg:pub.10.1007/978-3-642-61798-0
    6 sg:pub.10.1007/978-3-642-65161-8
    7 sg:pub.10.1007/bf01206962
    8 sg:pub.10.1007/bf01210623
    9 sg:pub.10.1007/s00030-009-0026-9
    10 sg:pub.10.1007/s00030-011-0136-z
    11 sg:pub.10.1007/s00030-012-0175-0
    12 sg:pub.10.1007/s00030-013-0256-8
    13 sg:pub.10.1007/s00526-009-0300-z
    14 sg:pub.10.1007/s10114-014-2750-2
    15 schema:datePublished 2017-03-01
    16 schema:datePublishedReg 2017-03-01
    17 schema:description We prove the existence of two solutions for some elliptic equations with combined indefinite nonlinearities on the boundary. The main novelty is to consider variational methods together with a suitable split of the Sobolev space W1,2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,2}(\Omega )$$\end{document}.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N61e9e8114ac9417ba41eb6b71dade594
    21 Nd34684f73f884792be83b8f8c75a5bb6
    22 sg:journal.1136275
    23 schema:keywords Sobolev spaces
    24 boundaries
    25 elliptic equations
    26 elliptic problems
    27 equations
    28 existence
    29 indefinite nonlinearity
    30 main novelty
    31 method
    32 nonlinearity
    33 novelty
    34 problem
    35 semilinear elliptic problem
    36 solution
    37 space
    38 split
    39 suitable split
    40 variational method
    41 schema:name Semilinear elliptic problems with combined nonlinearities on the boundary
    42 schema:pagination 1887-1901
    43 schema:productId N88cbfb276a4446c7975ee7bd6534fd45
    44 Ncb5225d20ef94320ad543699b02e2a5c
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024135
    46 https://doi.org/10.1007/s10231-017-0645-4
    47 schema:sdDatePublished 2022-10-01T06:43
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N017ecffcd54e471185bce94d422cb817
    50 schema:url https://doi.org/10.1007/s10231-017-0645-4
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N017ecffcd54e471185bce94d422cb817 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N25ab537cc71745f2bf9ea049c9b309ee rdf:first sg:person.07571001245.67
    57 rdf:rest rdf:nil
    58 N4206d25b298349338b80bb9a04008b4a rdf:first sg:person.013642761177.29
    59 rdf:rest Na88cf714e3634fd5b265055a2304f042
    60 N61e9e8114ac9417ba41eb6b71dade594 schema:volumeNumber 196
    61 rdf:type schema:PublicationVolume
    62 N88cbfb276a4446c7975ee7bd6534fd45 schema:name dimensions_id
    63 schema:value pub.1084024135
    64 rdf:type schema:PropertyValue
    65 Na88cf714e3634fd5b265055a2304f042 rdf:first sg:person.014763527065.00
    66 rdf:rest N25ab537cc71745f2bf9ea049c9b309ee
    67 Ncb5225d20ef94320ad543699b02e2a5c schema:name doi
    68 schema:value 10.1007/s10231-017-0645-4
    69 rdf:type schema:PropertyValue
    70 Nd34684f73f884792be83b8f8c75a5bb6 schema:issueNumber 5
    71 rdf:type schema:PublicationIssue
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1136275 schema:issn 0373-3114
    79 1618-1891
    80 schema:name Annali di Matematica Pura ed Applicata (1923 -)
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.013642761177.29 schema:affiliation grid-institutes:grid.7632.0
    84 schema:familyName Furtado
    85 schema:givenName Marcelo F.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642761177.29
    87 rdf:type schema:Person
    88 sg:person.014763527065.00 schema:affiliation grid-institutes:grid.7632.0
    89 schema:familyName Ruviaro
    90 schema:givenName Ricardo
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763527065.00
    92 rdf:type schema:Person
    93 sg:person.07571001245.67 schema:affiliation grid-institutes:grid.411195.9
    94 schema:familyName Silva
    95 schema:givenName Edcarlos D.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571001245.67
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-0-387-70914-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024035369
    99 https://doi.org/10.1007/978-0-387-70914-7
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/978-3-642-61798-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077577
    102 https://doi.org/10.1007/978-3-642-61798-0
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-642-65161-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010968636
    105 https://doi.org/10.1007/978-3-642-65161-8
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01206962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004709822
    108 https://doi.org/10.1007/bf01206962
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01210623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009039369
    111 https://doi.org/10.1007/bf01210623
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00030-009-0026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017179884
    114 https://doi.org/10.1007/s00030-009-0026-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00030-011-0136-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029935314
    117 https://doi.org/10.1007/s00030-011-0136-z
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00030-012-0175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039705775
    120 https://doi.org/10.1007/s00030-012-0175-0
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00030-013-0256-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030135026
    123 https://doi.org/10.1007/s00030-013-0256-8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00526-009-0300-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035873492
    126 https://doi.org/10.1007/s00526-009-0300-z
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10114-014-2750-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519281
    129 https://doi.org/10.1007/s10114-014-2750-2
    130 rdf:type schema:CreativeWork
    131 grid-institutes:grid.411195.9 schema:alternateName Instituto de Matemática, Universidade Federal de Goiás, 74000-000, Goiânia, GO, Brazil
    132 schema:name Instituto de Matemática, Universidade Federal de Goiás, 74000-000, Goiânia, GO, Brazil
    133 rdf:type schema:Organization
    134 grid-institutes:grid.7632.0 schema:alternateName Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
    135 schema:name Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...