Ontology type: schema:ScholarlyArticle Open Access: True
2017-08
AUTHORSEnrico Le Donne, Sebastiano Nicolussi-Golo, Andrea Sambusetti
ABSTRACTThe paper is devoted to the large-scale geometry of the Heisenberg group H equipped with left-invariant Riemannian metrics. We prove that two such metrics have bounded difference if and only if they are asymptotic, i.e., their ratio goes to one at infinity. Moreover, we show that for every left-invariant Riemannian metric d on H there is a unique subRiemannian metric d′ for which d-d′ goes to zero at infinity, and we estimate the rate of convergence. As a first immediate consequence, we get that the Riemannian Heisenberg group is at bounded distance from its asymptotic cone. The second consequence, which was our aim, is the explicit description of the horoboundary of the Riemannian Heisenberg group. More... »
PAGES1251-1272
http://scigraph.springernature.com/pub.10.1007/s10231-016-0615-2
DOIhttp://dx.doi.org/10.1007/s10231-016-0615-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036763296
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Jyv\u00e4skyl\u00e4",
"id": "https://www.grid.ac/institutes/grid.9681.6",
"name": [
"University of Jyvaskyla, Jyv\u00e4skyl\u00e4, Finland"
],
"type": "Organization"
},
"familyName": "Le Donne",
"givenName": "Enrico",
"id": "sg:person.01330732167.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Jyv\u00e4skyl\u00e4",
"id": "https://www.grid.ac/institutes/grid.9681.6",
"name": [
"University of Jyvaskyla, Jyv\u00e4skyl\u00e4, Finland"
],
"type": "Organization"
},
"familyName": "Nicolussi-Golo",
"givenName": "Sebastiano",
"id": "sg:person.013072503246.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072503246.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Sapienza University of Rome",
"id": "https://www.grid.ac/institutes/grid.7841.a",
"name": [
"Sapienza Universit\u00e0 di Roma, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Sambusetti",
"givenName": "Andrea",
"id": "sg:person.010566571507.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566571507.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02698687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000454347",
"https://doi.org/10.1007/bf02698687"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1004916117293",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003260193",
"https://doi.org/10.1023/a:1004916117293"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-06-03877-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008070123"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/advgeom.2008.032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015930001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-08690-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016488067",
"https://doi.org/10.1007/978-3-319-08690-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-08690-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016488067",
"https://doi.org/10.1007/978-3-319-08690-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/9781400881550-016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017088614"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1018384993",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12494-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018384993",
"https://doi.org/10.1007/978-3-662-12494-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12494-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018384993",
"https://doi.org/10.1007/978-3-662-12494-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7515-8_7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023267988",
"https://doi.org/10.1007/978-3-0348-7515-8_7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1203854109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024414171"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9240-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024469024",
"https://doi.org/10.1007/978-3-0348-9240-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9240-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024469024",
"https://doi.org/10.1007/978-3-0348-9240-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02684773",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027444092",
"https://doi.org/10.1007/bf02684773"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8133-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027539116",
"https://doi.org/10.1007/978-3-7643-8133-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8133-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027539116",
"https://doi.org/10.1007/978-3-7643-8133-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04804-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027975594",
"https://doi.org/10.1007/978-3-319-04804-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04804-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027975594",
"https://doi.org/10.1007/978-3-319-04804-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s1088-4173-2010-00217-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028093425"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0021-8693(72)90058-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028194084"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0143385700002054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031277409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0143385700002054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031277409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/s0024610798006371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038138498"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-9586-7_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038753055",
"https://doi.org/10.1007/978-1-4613-9586-7_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046959965",
"https://doi.org/10.1007/bf02392046"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0305004107000096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053811199"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0305004107000096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053811199"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.2009.242.299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069071927"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.2012.259.55",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069072355"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.24033/msmf.408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083662958"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214428658",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084458809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214501132",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084460230"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/ggd/381",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1087096486"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-08",
"datePublishedReg": "2017-08-01",
"description": "The paper is devoted to the large-scale geometry of the Heisenberg group H equipped with left-invariant Riemannian metrics. We prove that two such metrics have bounded difference if and only if they are asymptotic, i.e., their ratio goes to one at infinity. Moreover, we show that for every left-invariant Riemannian metric d on H there is a unique subRiemannian metric d\u2032 for which d-d\u2032 goes to zero at infinity, and we estimate the rate of convergence. As a first immediate consequence, we get that the Riemannian Heisenberg group is at bounded distance from its asymptotic cone. The second consequence, which was our aim, is the explicit description of the horoboundary of the Riemannian Heisenberg group.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10231-016-0615-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136275",
"issn": [
"0373-3114",
"1618-1891"
],
"name": "Annali di Matematica Pura ed Applicata (1923 -)",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "196"
}
],
"name": "Asymptotic behavior of the Riemannian Heisenberg group and its horoboundary",
"pagination": "1251-1272",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"af20894e8fc75fc0197517fe8be82205cf65b96bac68d313bb91746f3dc317a9"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10231-016-0615-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036763296"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10231-016-0615-2",
"https://app.dimensions.ai/details/publication/pub.1036763296"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10231-016-0615-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10231-016-0615-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10231-016-0615-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10231-016-0615-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10231-016-0615-2'
This table displays all metadata directly associated to this object as RDF triples.
169 TRIPLES
21 PREDICATES
54 URIs
19 LITERALS
7 BLANK NODES