Locality of the perimeter in Carnot groups and chain rule View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

Luigi Ambrosio, Matteo Scienza

ABSTRACT

In the class of Carnot groups, we study fine properties of sets of finite perimeter. Improving a recent result by Ambrosio–Kleiner–Le Donne, we show that the perimeter measure is local, i.e., that given any pair of sets of finite perimeter their perimeter measures coincide on the intersection of their essential boundaries. This solves a question left open in Ambrosio et al. (Calculus of variations: topics from mathematical heritage of Ennio De Giorgi. Quad Mat). As a consequence, we prove a general chain rule for BV functions in this setting. More... »

PAGES

661-678

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10231-010-0130-9

DOI

http://dx.doi.org/10.1007/s10231-010-0130-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010608794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Department of Mathematics, Pisa University, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scienza", 
        "givenName": "Matteo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02922053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023416382", 
          "https://doi.org/10.1007/bf02922053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aima.2000.1963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023811011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02412838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027293104", 
          "https://doi.org/10.1007/bf02412838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-009-9068-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031923890", 
          "https://doi.org/10.1007/s12220-009-9068-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-009-9068-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031923890", 
          "https://doi.org/10.1007/s12220-009-9068-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002080100228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052350785", 
          "https://doi.org/10.1007/s002080100228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "In the class of Carnot groups, we study fine properties of sets of finite perimeter. Improving a recent result by Ambrosio\u2013Kleiner\u2013Le Donne, we show that the perimeter measure is local, i.e., that given any pair of sets of finite perimeter their perimeter measures coincide on the intersection of their essential boundaries. This solves a question left open in Ambrosio et al. (Calculus of variations: topics from mathematical heritage of Ennio De Giorgi. Quad Mat). As a consequence, we prove a general chain rule for BV functions in this setting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10231-010-0130-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136275", 
        "issn": [
          "0373-3114", 
          "1618-1891"
        ], 
        "name": "Annali di Matematica Pura ed Applicata (1923 -)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "189"
      }
    ], 
    "name": "Locality of the perimeter in Carnot groups and chain rule", 
    "pagination": "661-678", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "328aa85d9cfb84c076588e619f746630e5b06728fbf83f9ed2d2f0efe0fcd360"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10231-010-0130-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010608794"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10231-010-0130-9", 
      "https://app.dimensions.ai/details/publication/pub.1010608794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10231-010-0130-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10231-010-0130-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10231-010-0130-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10231-010-0130-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10231-010-0130-9'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10231-010-0130-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N09760fb9e1dd48cbb748adfeb65bfdae
4 schema:citation sg:pub.10.1007/bf02412838
5 sg:pub.10.1007/bf02922053
6 sg:pub.10.1007/s002080100228
7 sg:pub.10.1007/s12220-009-9068-9
8 https://doi.org/10.1006/aima.2000.1963
9 https://doi.org/10.1017/cbo9780511623813
10 https://doi.org/10.1090/memo/0688
11 https://doi.org/10.2307/1971410
12 schema:datePublished 2010-09
13 schema:datePublishedReg 2010-09-01
14 schema:description In the class of Carnot groups, we study fine properties of sets of finite perimeter. Improving a recent result by Ambrosio–Kleiner–Le Donne, we show that the perimeter measure is local, i.e., that given any pair of sets of finite perimeter their perimeter measures coincide on the intersection of their essential boundaries. This solves a question left open in Ambrosio et al. (Calculus of variations: topics from mathematical heritage of Ennio De Giorgi. Quad Mat). As a consequence, we prove a general chain rule for BV functions in this setting.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nad03686c2dc8465cbd5bee34239a0abb
19 Nb4b4dce1a9a64e94bad56b8cc4552241
20 sg:journal.1136275
21 schema:name Locality of the perimeter in Carnot groups and chain rule
22 schema:pagination 661-678
23 schema:productId N62559f4b35ab4203a29fac59b9244532
24 N75ee25e2b435474b88024be7146e52ab
25 Nd97408053f89449d856bf9caa901b51a
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608794
27 https://doi.org/10.1007/s10231-010-0130-9
28 schema:sdDatePublished 2019-04-11T10:00
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N257fa105366e4fddb21b17abd89a3bf6
31 schema:url http://link.springer.com/10.1007%2Fs10231-010-0130-9
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N09760fb9e1dd48cbb748adfeb65bfdae rdf:first sg:person.012621721115.68
36 rdf:rest N6621a73ecf1c42cebb69464f10045a61
37 N257fa105366e4fddb21b17abd89a3bf6 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N462f8701d679429e8be8ceeec9006b1f schema:affiliation https://www.grid.ac/institutes/grid.5395.a
40 schema:familyName Scienza
41 schema:givenName Matteo
42 rdf:type schema:Person
43 N62559f4b35ab4203a29fac59b9244532 schema:name dimensions_id
44 schema:value pub.1010608794
45 rdf:type schema:PropertyValue
46 N6621a73ecf1c42cebb69464f10045a61 rdf:first N462f8701d679429e8be8ceeec9006b1f
47 rdf:rest rdf:nil
48 N75ee25e2b435474b88024be7146e52ab schema:name doi
49 schema:value 10.1007/s10231-010-0130-9
50 rdf:type schema:PropertyValue
51 Nad03686c2dc8465cbd5bee34239a0abb schema:issueNumber 4
52 rdf:type schema:PublicationIssue
53 Nb4b4dce1a9a64e94bad56b8cc4552241 schema:volumeNumber 189
54 rdf:type schema:PublicationVolume
55 Nd97408053f89449d856bf9caa901b51a schema:name readcube_id
56 schema:value 328aa85d9cfb84c076588e619f746630e5b06728fbf83f9ed2d2f0efe0fcd360
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136275 schema:issn 0373-3114
65 1618-1891
66 schema:name Annali di Matematica Pura ed Applicata (1923 -)
67 rdf:type schema:Periodical
68 sg:person.012621721115.68 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
69 schema:familyName Ambrosio
70 schema:givenName Luigi
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
72 rdf:type schema:Person
73 sg:pub.10.1007/bf02412838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027293104
74 https://doi.org/10.1007/bf02412838
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02922053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023416382
77 https://doi.org/10.1007/bf02922053
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s002080100228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052350785
80 https://doi.org/10.1007/s002080100228
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s12220-009-9068-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031923890
83 https://doi.org/10.1007/s12220-009-9068-9
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1006/aima.2000.1963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023811011
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1017/cbo9780511623813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672683
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/memo/0688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343737
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2307/1971410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676681
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
94 schema:name Department of Mathematics, Pisa University, Pisa, Italy
95 rdf:type schema:Organization
96 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
97 schema:name Scuola Normale Superiore, Pisa, Italy
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...