Polynomial–Exponential Decomposition From Moments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Bernard Mourrain

ABSTRACT

We analyze the decomposition problem of multivariate polynomial–exponential functions from their truncated series and present new algorithms to compute their decomposition. Using the duality between polynomials and formal power series, we first show how the elements in the dual of an Artinian algebra correspond to polynomial–exponential functions. They are also the solutions of systems of partial differential equations with constant coefficients. We relate their representation to the inverse system of the isolated points of the characteristic variety. Using the properties of Hankel operators, we establish a correspondence between polynomial–exponential series and Artinian Gorenstein algebras. We generalize Kronecker theorem to the multivariate case, by showing that the symbol of a Hankel operator of finite rank is a polynomial–exponential series and by connecting the rank of the Hankel operator with the decomposition of the symbol. A generalization of Prony’s approach to multivariate decomposition problems is presented, exploiting eigenvector methods for solving polynomial equations. We show how to compute the frequencies and weights of a minimal polynomial–exponential decomposition, using the first coefficients of the series. A key ingredient of the approach is the flat extension criteria, which leads to a multivariate generalization of a rank condition for a Carathéodory–Fejér decomposition of multivariate Hankel matrices. A new algorithm is given to compute a basis of the Artinian Gorenstein algebra, based on a Gram–Schmidt orthogonalization process and to decompose polynomial–exponential series. A general framework for the applications of this approach is described and illustrated in different problems. We provide Kronecker-type theorems for convolution operators, showing that a convolution operator (or a cross-correlation operator) is of finite rank, if and only if, its symbol is a polynomial–exponential function, and we relate its rank to the decomposition of its symbol. We also present Kronecker-type theorems for the reconstruction of measures as weighted sums of Dirac measures from moments and for the decomposition of polynomial–exponential functions from values. Finally, we describe an application of this method for the sparse interpolation of polylog functions from values. More... »

PAGES

1-58

References to SciGraph publications

  • 2001-07. The Constructive Solution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients in MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING
  • 1992. Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra in NONE
  • 2017-06. Prony’s method in several variables in NUMERISCHE MATHEMATIK
  • 2009. Sums of Squares, Moment Matrices and Optimization Over Polynomials in EMERGING APPLICATIONS OF ALGEBRAIC GEOMETRY
  • 1999. A New Criterion for Normal Form Algorithms in APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES
  • 1979. Probabilistic algorithms for sparse polynomials in SYMBOLIC AND ALGEBRAIC COMPUTATION
  • 1987-03. Toeplitz and Hankel operators on the Paley-Wiener space in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2017-04. On the Structure of Positive Semi-Definite Finite Rank General Domain Hankel and Toeplitz Operators in Several Variables in COMPLEX ANALYSIS AND OPERATOR THEORY
  • 1999. Power Sums, Gorenstein Algebras, and Determinantal Loci in NONE
  • 2007. Introduction à la résolution des systèmes polynomiaux in NONE
  • 1911-12. Über das carathéodory’sche problem, potenzreihen mit positivem reellen teil betreffend in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • 2007-03. On the numerical condition of a generalized Hankel eigenvalue problem in NUMERISCHE MATHEMATIK
  • 2009-07. A generalized flat extension theorem for moment matrices in ARCHIV DER MATHEMATIK
  • 2015-07. On General Domain Truncated Correlation and Convolution Operators with Finite Rank in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10208-017-9372-x

    DOI

    http://dx.doi.org/10.1007/s10208-017-9372-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092411221


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Universit\u00e9 C\u00f4te d\u2019Azur, Inria Sophia Antipolis - M\u00e9diterran\u00e9e, Aromath, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mourrain", 
            "givenName": "Bernard", 
            "id": "sg:person.015160702500.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160702500.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.laa.2015.10.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000592834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1576702.1576727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000613646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2012.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000900545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0024-3795(82)90110-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001526881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1998.1782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003680731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-09686-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005145396", 
              "https://doi.org/10.1007/978-0-387-09686-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/29/2/025001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006212354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0024-3795(98)10223-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007116592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03014797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008363974", 
              "https://doi.org/10.1007/bf03014797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2012.05.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008692745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2755996.2756673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016786259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1017593284", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-71647-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017593284", 
              "https://doi.org/10.1007/978-3-540-71647-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-71647-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017593284", 
              "https://doi.org/10.1007/978-3-540-71647-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2010.06.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018213041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01199078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021206252", 
              "https://doi.org/10.1007/bf01199078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01199078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021206252", 
              "https://doi.org/10.1007/bf01199078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2009.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022148128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcom.1999.0530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gamm.201410011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024684424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1025532703", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025532703", 
              "https://doi.org/10.1007/bfb0093426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025532703", 
              "https://doi.org/10.1007/bfb0093426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026640051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026640051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46796-3_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026809566", 
              "https://doi.org/10.1007/3-540-46796-3_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-09519-5_73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030416919", 
              "https://doi.org/10.1007/3-540-09519-5_73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-006-0054-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032086241", 
              "https://doi.org/10.1007/s00211-006-0054-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-006-0054-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032086241", 
              "https://doi.org/10.1007/s00211-006-0054-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0747-7171(88)80033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033685136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0266-5611/19/2/201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033875454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2008.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034521606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011901522520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035696856", 
              "https://doi.org/10.1023/a:1011901522520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00020-015-2217-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037032226", 
              "https://doi.org/10.1007/s00020-015-2217-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/62212.62241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037365455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(97)00023-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038214321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-016-0844-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043346495", 
              "https://doi.org/10.1007/s00211-016-0844-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-016-0844-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043346495", 
              "https://doi.org/10.1007/s00211-016-0844-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-016-0596-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043452117", 
              "https://doi.org/10.1007/s11785-016-0596-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-016-0596-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043452117", 
              "https://doi.org/10.1007/s11785-016-0596-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1073884.1073920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045195589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2009.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048109684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1049529071", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2181-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049529071", 
              "https://doi.org/10.1007/978-1-4757-2181-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2181-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049529071", 
              "https://doi.org/10.1007/978-1-4757-2181-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-0427(99)00028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049566257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2005.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052298732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.59953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/29.32276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061144455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.143447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061227994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1968.1054109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061646428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1969.1054260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061646572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2013.2291876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061654731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2016.2553041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061655854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/110836584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062865005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0895479892230031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062881978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139856065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098688020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511530074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098705635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/mmono/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101567780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/97816080504821100101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109399006"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We analyze the decomposition problem of multivariate polynomial\u2013exponential functions from their truncated series and present new algorithms to compute their decomposition. Using the duality between polynomials and formal power series, we first show how the elements in the dual of an Artinian algebra correspond to polynomial\u2013exponential functions. They are also the solutions of systems of partial differential equations with constant coefficients. We relate their representation to the inverse system of the isolated points of the characteristic variety. Using the properties of Hankel operators, we establish a correspondence between polynomial\u2013exponential series and Artinian Gorenstein algebras. We generalize Kronecker theorem to the multivariate case, by showing that the symbol of a Hankel operator of finite rank is a polynomial\u2013exponential series and by connecting the rank of the Hankel operator with the decomposition of the symbol. A generalization of Prony\u2019s approach to multivariate decomposition problems is presented, exploiting eigenvector methods for solving polynomial equations. We show how to compute the frequencies and weights of a minimal polynomial\u2013exponential decomposition, using the first coefficients of the series. A key ingredient of the approach is the flat extension criteria, which leads to a multivariate generalization of a rank condition for a Carath\u00e9odory\u2013Fej\u00e9r decomposition of multivariate Hankel matrices. A new algorithm is given to compute a basis of the Artinian Gorenstein algebra, based on a Gram\u2013Schmidt orthogonalization process and to decompose polynomial\u2013exponential series. A general framework for the applications of this approach is described and illustrated in different problems. We provide Kronecker-type theorems for convolution operators, showing that a convolution operator (or a cross-correlation operator) is of finite rank, if and only if, its symbol is a polynomial\u2013exponential function, and we relate its rank to the decomposition of its symbol. We also present Kronecker-type theorems for the reconstruction of measures as weighted sums of Dirac measures from moments and for the decomposition of polynomial\u2013exponential functions from values. Finally, we describe an application of this method for the sparse interpolation of polylog functions from values.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10208-017-9372-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1046692", 
            "issn": [
              "1615-3375", 
              "1615-3383"
            ], 
            "name": "Foundations of Computational Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Polynomial\u2013Exponential Decomposition From Moments", 
        "pagination": "1-58", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "31ba12e0076ad9a025fb9db5946685a62a621d19630d2edbb6c957d9d292ede0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10208-017-9372-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092411221"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10208-017-9372-x", 
          "https://app.dimensions.ai/details/publication/pub.1092411221"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10208-017-9372-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10208-017-9372-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10208-017-9372-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10208-017-9372-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10208-017-9372-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10208-017-9372-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0ac4c15ccc6c4049a8f020afb6fc9022
    4 schema:citation sg:pub.10.1007/3-540-09519-5_73
    5 sg:pub.10.1007/3-540-46796-3_41
    6 sg:pub.10.1007/978-0-387-09686-5_7
    7 sg:pub.10.1007/978-1-4757-2181-2
    8 sg:pub.10.1007/978-3-540-71647-1
    9 sg:pub.10.1007/bf01199078
    10 sg:pub.10.1007/bf03014797
    11 sg:pub.10.1007/bfb0093426
    12 sg:pub.10.1007/s00013-009-0007-6
    13 sg:pub.10.1007/s00020-015-2217-6
    14 sg:pub.10.1007/s00211-006-0054-x
    15 sg:pub.10.1007/s00211-016-0844-8
    16 sg:pub.10.1007/s11785-016-0596-6
    17 sg:pub.10.1023/a:1011901522520
    18 https://app.dimensions.ai/details/publication/pub.1017593284
    19 https://app.dimensions.ai/details/publication/pub.1025532703
    20 https://app.dimensions.ai/details/publication/pub.1049529071
    21 https://doi.org/10.1002/cpa.20124
    22 https://doi.org/10.1002/gamm.201410011
    23 https://doi.org/10.1006/aima.1998.1782
    24 https://doi.org/10.1006/jcom.1999.0530
    25 https://doi.org/10.1016/0024-3795(82)90110-0
    26 https://doi.org/10.1016/j.acha.2005.01.003
    27 https://doi.org/10.1016/j.acha.2009.09.001
    28 https://doi.org/10.1016/j.jsc.2008.11.003
    29 https://doi.org/10.1016/j.jsc.2012.03.007
    30 https://doi.org/10.1016/j.jsc.2012.05.012
    31 https://doi.org/10.1016/j.laa.2010.06.046
    32 https://doi.org/10.1016/j.laa.2015.10.023
    33 https://doi.org/10.1016/j.sigpro.2009.11.012
    34 https://doi.org/10.1016/s0022-4049(97)00023-6
    35 https://doi.org/10.1016/s0024-3795(98)10223-9
    36 https://doi.org/10.1016/s0377-0427(99)00028-x
    37 https://doi.org/10.1016/s0747-7171(88)80033-6
    38 https://doi.org/10.1017/cbo9780511530074
    39 https://doi.org/10.1017/cbo9781139856065
    40 https://doi.org/10.1088/0266-5611/19/2/201
    41 https://doi.org/10.1088/0266-5611/29/2/025001
    42 https://doi.org/10.1090/mmono/002
    43 https://doi.org/10.1109/18.59953
    44 https://doi.org/10.1109/29.32276
    45 https://doi.org/10.1109/78.143447
    46 https://doi.org/10.1109/tit.1968.1054109
    47 https://doi.org/10.1109/tit.1969.1054260
    48 https://doi.org/10.1109/tit.2013.2291876
    49 https://doi.org/10.1109/tit.2016.2553041
    50 https://doi.org/10.1137/110836584
    51 https://doi.org/10.1137/s0895479892230031
    52 https://doi.org/10.1145/1073884.1073920
    53 https://doi.org/10.1145/1576702.1576727
    54 https://doi.org/10.1145/2755996.2756673
    55 https://doi.org/10.1145/62212.62241
    56 https://doi.org/10.2174/97816080504821100101
    57 https://doi.org/10.24033/bsmf.1879
    58 https://doi.org/10.5802/aif.65
    59 schema:datePublished 2018-12
    60 schema:datePublishedReg 2018-12-01
    61 schema:description We analyze the decomposition problem of multivariate polynomial–exponential functions from their truncated series and present new algorithms to compute their decomposition. Using the duality between polynomials and formal power series, we first show how the elements in the dual of an Artinian algebra correspond to polynomial–exponential functions. They are also the solutions of systems of partial differential equations with constant coefficients. We relate their representation to the inverse system of the isolated points of the characteristic variety. Using the properties of Hankel operators, we establish a correspondence between polynomial–exponential series and Artinian Gorenstein algebras. We generalize Kronecker theorem to the multivariate case, by showing that the symbol of a Hankel operator of finite rank is a polynomial–exponential series and by connecting the rank of the Hankel operator with the decomposition of the symbol. A generalization of Prony’s approach to multivariate decomposition problems is presented, exploiting eigenvector methods for solving polynomial equations. We show how to compute the frequencies and weights of a minimal polynomial–exponential decomposition, using the first coefficients of the series. A key ingredient of the approach is the flat extension criteria, which leads to a multivariate generalization of a rank condition for a Carathéodory–Fejér decomposition of multivariate Hankel matrices. A new algorithm is given to compute a basis of the Artinian Gorenstein algebra, based on a Gram–Schmidt orthogonalization process and to decompose polynomial–exponential series. A general framework for the applications of this approach is described and illustrated in different problems. We provide Kronecker-type theorems for convolution operators, showing that a convolution operator (or a cross-correlation operator) is of finite rank, if and only if, its symbol is a polynomial–exponential function, and we relate its rank to the decomposition of its symbol. We also present Kronecker-type theorems for the reconstruction of measures as weighted sums of Dirac measures from moments and for the decomposition of polynomial–exponential functions from values. Finally, we describe an application of this method for the sparse interpolation of polylog functions from values.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N623f60e794b74c4abf5ee7bdd10fd069
    66 N6718945c2360461fbaebf26531df6a76
    67 sg:journal.1046692
    68 schema:name Polynomial–Exponential Decomposition From Moments
    69 schema:pagination 1-58
    70 schema:productId N18d939f09d024857a0f776fa130701fe
    71 Nae9a8124549e4634a59e81bdde60e047
    72 Nc68a769d8df54228855ad9f68168a268
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092411221
    74 https://doi.org/10.1007/s10208-017-9372-x
    75 schema:sdDatePublished 2019-04-10T22:48
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N5f62d36bbc804465a17be0e136e727f9
    78 schema:url https://link.springer.com/10.1007%2Fs10208-017-9372-x
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N0ac4c15ccc6c4049a8f020afb6fc9022 rdf:first sg:person.015160702500.26
    83 rdf:rest rdf:nil
    84 N18d939f09d024857a0f776fa130701fe schema:name readcube_id
    85 schema:value 31ba12e0076ad9a025fb9db5946685a62a621d19630d2edbb6c957d9d292ede0
    86 rdf:type schema:PropertyValue
    87 N5f62d36bbc804465a17be0e136e727f9 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N623f60e794b74c4abf5ee7bdd10fd069 schema:volumeNumber 18
    90 rdf:type schema:PublicationVolume
    91 N6718945c2360461fbaebf26531df6a76 schema:issueNumber 6
    92 rdf:type schema:PublicationIssue
    93 Nae9a8124549e4634a59e81bdde60e047 schema:name doi
    94 schema:value 10.1007/s10208-017-9372-x
    95 rdf:type schema:PropertyValue
    96 Nc68a769d8df54228855ad9f68168a268 schema:name dimensions_id
    97 schema:value pub.1092411221
    98 rdf:type schema:PropertyValue
    99 Nda7cf3ad48e349cbba41a9e14cf31030 schema:name Université Côte d’Azur, Inria Sophia Antipolis - Méditerranée, Aromath, France
    100 rdf:type schema:Organization
    101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mathematical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Pure Mathematics
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1046692 schema:issn 1615-3375
    108 1615-3383
    109 schema:name Foundations of Computational Mathematics
    110 rdf:type schema:Periodical
    111 sg:person.015160702500.26 schema:affiliation Nda7cf3ad48e349cbba41a9e14cf31030
    112 schema:familyName Mourrain
    113 schema:givenName Bernard
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015160702500.26
    115 rdf:type schema:Person
    116 sg:pub.10.1007/3-540-09519-5_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030416919
    117 https://doi.org/10.1007/3-540-09519-5_73
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/3-540-46796-3_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026809566
    120 https://doi.org/10.1007/3-540-46796-3_41
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-0-387-09686-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005145396
    123 https://doi.org/10.1007/978-0-387-09686-5_7
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-1-4757-2181-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049529071
    126 https://doi.org/10.1007/978-1-4757-2181-2
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-540-71647-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017593284
    129 https://doi.org/10.1007/978-3-540-71647-1
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01199078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021206252
    132 https://doi.org/10.1007/bf01199078
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf03014797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008363974
    135 https://doi.org/10.1007/bf03014797
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bfb0093426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025532703
    138 https://doi.org/10.1007/bfb0093426
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00013-009-0007-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404760
    141 https://doi.org/10.1007/s00013-009-0007-6
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00020-015-2217-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037032226
    144 https://doi.org/10.1007/s00020-015-2217-6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00211-006-0054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032086241
    147 https://doi.org/10.1007/s00211-006-0054-x
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00211-016-0844-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043346495
    150 https://doi.org/10.1007/s00211-016-0844-8
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11785-016-0596-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043452117
    153 https://doi.org/10.1007/s11785-016-0596-6
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/a:1011901522520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035696856
    156 https://doi.org/10.1023/a:1011901522520
    157 rdf:type schema:CreativeWork
    158 https://app.dimensions.ai/details/publication/pub.1017593284 schema:CreativeWork
    159 https://app.dimensions.ai/details/publication/pub.1025532703 schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1049529071 schema:CreativeWork
    161 https://doi.org/10.1002/cpa.20124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026640051
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/gamm.201410011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684424
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1006/aima.1998.1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003680731
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1006/jcom.1999.0530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589942
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0024-3795(82)90110-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526881
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.acha.2005.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052298732
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.acha.2009.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022148128
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.jsc.2008.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034521606
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.jsc.2012.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900545
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.jsc.2012.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008692745
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.laa.2010.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018213041
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.laa.2015.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000592834
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.sigpro.2009.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048109684
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s0022-4049(97)00023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038214321
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/s0024-3795(98)10223-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007116592
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/s0377-0427(99)00028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049566257
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/s0747-7171(88)80033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033685136
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1017/cbo9780511530074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098705635
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1017/cbo9781139856065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098688020
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1088/0266-5611/19/2/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033875454
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1088/0266-5611/29/2/025001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006212354
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1090/mmono/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567780
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1109/18.59953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100362
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/29.32276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144455
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/78.143447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061227994
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/tit.1968.1054109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646428
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/tit.1969.1054260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646572
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/tit.2013.2291876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654731
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/tit.2016.2553041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061655854
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1137/110836584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865005
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1137/s0895479892230031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881978
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1145/1073884.1073920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045195589
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1145/1576702.1576727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000613646
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1145/2755996.2756673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016786259
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1145/62212.62241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037365455
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.2174/97816080504821100101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109399006
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.24033/bsmf.1879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660863
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.5802/aif.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139305
    236 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...