Lightweight energy consumption-based intrusion detection system for wireless sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04-29

AUTHORS

Michael Riecker, Sebastian Biedermann, Rachid El Bansarkhani, Matthias Hollick

ABSTRACT

Wireless sensor networks are increasingly used in industrial settings and in safety-critical applications, generating a financial and social impact. Complementing to cryptographic means to protect the communication, it is desirable to monitor the performance of the system and detect attackers during operation. However, existing intrusion detection systems are too resource-demanding. In this paper, we propose a lightweight, energy-efficient system, which makes use of mobile agents to detect intrusions based on the energy consumption of the sensor nodes as a metric. A linear regression model is applied to predict the energy consumption. Simulation results indicate that denial-of-service attacks, such as flooding, can be detected with high accuracy, while keeping the number of false-positives very low. More... »

PAGES

155-167

References to SciGraph publications

  • 2008-01-01. The Salsa20 Family of Stream Ciphers in NEW STREAM CIPHER DESIGNS
  • 2012. A New Energy Prediction Approach for Intrusion Detection in Cluster-Based Wireless Sensor Networks in GREEN COMMUNICATIONS AND NETWORKING
  • 2010. Time-Critical Data Delivery in Wireless Sensor Networks in DISTRIBUTED COMPUTING IN SENSOR SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10207-014-0241-1

    DOI

    http://dx.doi.org/10.1007/s10207-014-0241-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009353651


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Secure Mobile Networking Lab, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Secure Mobile Networking Lab, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riecker", 
            "givenName": "Michael", 
            "id": "sg:person.010771614070.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771614070.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Security Engineering Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Security Engineering Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biedermann", 
            "givenName": "Sebastian", 
            "id": "sg:person.014543331374.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331374.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cryptography and Computational Algebra, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Cryptography and Computational Algebra, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El Bansarkhani", 
            "givenName": "Rachid", 
            "id": "sg:person.012101617542.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101617542.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Secure Mobile Networking Lab, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Secure Mobile Networking Lab, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hollick", 
            "givenName": "Matthias", 
            "id": "sg:person.010143067443.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143067443.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-68351-3_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052896772", 
              "https://doi.org/10.1007/978-3-540-68351-3_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13651-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050140420", 
              "https://doi.org/10.1007/978-3-642-13651-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33368-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016214996", 
              "https://doi.org/10.1007/978-3-642-33368-2_1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04-29", 
        "datePublishedReg": "2014-04-29", 
        "description": "Wireless sensor networks are increasingly used in industrial settings and in safety-critical applications, generating a financial and social impact. Complementing to cryptographic means to protect the communication, it is desirable to monitor the performance of the system and detect attackers during operation. However, existing intrusion detection systems are too resource-demanding. In this paper, we propose a lightweight, energy-efficient system, which makes use of mobile agents to detect intrusions based on the energy consumption of the sensor nodes as a metric. A linear regression model is applied to predict the energy consumption. Simulation results indicate that denial-of-service attacks, such as flooding, can be detected with high accuracy, while keeping the number of false-positives very low.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10207-014-0241-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136826", 
            "issn": [
              "1615-5262", 
              "1615-5270"
            ], 
            "name": "International Journal of Information Security", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "wireless sensor networks", 
          "intrusion detection system", 
          "sensor networks", 
          "energy consumption", 
          "energy-efficient systems", 
          "detection system", 
          "safety-critical applications", 
          "sensor nodes", 
          "service attacks", 
          "mobile agents", 
          "cryptographic means", 
          "simulation results", 
          "network", 
          "industrial settings", 
          "high accuracy", 
          "consumption", 
          "nodes", 
          "lightweight", 
          "communication", 
          "attacker", 
          "denial", 
          "system", 
          "metrics", 
          "attacks", 
          "performance", 
          "applications", 
          "accuracy", 
          "paper", 
          "operation", 
          "flooding", 
          "intrusion", 
          "linear regression models", 
          "model", 
          "social impact", 
          "number", 
          "use", 
          "means", 
          "results", 
          "regression models", 
          "setting", 
          "agents", 
          "impact", 
          "Lightweight energy consumption-based intrusion detection system", 
          "energy consumption-based intrusion detection system", 
          "consumption-based intrusion detection system"
        ], 
        "name": "Lightweight energy consumption-based intrusion detection system for wireless sensor networks", 
        "pagination": "155-167", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009353651"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10207-014-0241-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10207-014-0241-1", 
          "https://app.dimensions.ai/details/publication/pub.1009353651"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_631.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10207-014-0241-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10207-014-0241-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10207-014-0241-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10207-014-0241-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10207-014-0241-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      22 PREDICATES      73 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10207-014-0241-1 schema:about anzsrc-for:08
    2 anzsrc-for:15
    3 schema:author Nf3a1b99ccd4c4589b288ec06c839431c
    4 schema:citation sg:pub.10.1007/978-3-540-68351-3_8
    5 sg:pub.10.1007/978-3-642-13651-1_16
    6 sg:pub.10.1007/978-3-642-33368-2_1
    7 schema:datePublished 2014-04-29
    8 schema:datePublishedReg 2014-04-29
    9 schema:description Wireless sensor networks are increasingly used in industrial settings and in safety-critical applications, generating a financial and social impact. Complementing to cryptographic means to protect the communication, it is desirable to monitor the performance of the system and detect attackers during operation. However, existing intrusion detection systems are too resource-demanding. In this paper, we propose a lightweight, energy-efficient system, which makes use of mobile agents to detect intrusions based on the energy consumption of the sensor nodes as a metric. A linear regression model is applied to predict the energy consumption. Simulation results indicate that denial-of-service attacks, such as flooding, can be detected with high accuracy, while keeping the number of false-positives very low.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N621ed273d992457a9a3714a3fc520ba4
    14 Nef92ecc54be244399539fcfaeb1dcf04
    15 sg:journal.1136826
    16 schema:keywords Lightweight energy consumption-based intrusion detection system
    17 accuracy
    18 agents
    19 applications
    20 attacker
    21 attacks
    22 communication
    23 consumption
    24 consumption-based intrusion detection system
    25 cryptographic means
    26 denial
    27 detection system
    28 energy consumption
    29 energy consumption-based intrusion detection system
    30 energy-efficient systems
    31 flooding
    32 high accuracy
    33 impact
    34 industrial settings
    35 intrusion
    36 intrusion detection system
    37 lightweight
    38 linear regression models
    39 means
    40 metrics
    41 mobile agents
    42 model
    43 network
    44 nodes
    45 number
    46 operation
    47 paper
    48 performance
    49 regression models
    50 results
    51 safety-critical applications
    52 sensor networks
    53 sensor nodes
    54 service attacks
    55 setting
    56 simulation results
    57 social impact
    58 system
    59 use
    60 wireless sensor networks
    61 schema:name Lightweight energy consumption-based intrusion detection system for wireless sensor networks
    62 schema:pagination 155-167
    63 schema:productId N74e0f33cb112476b81eccfcc42611573
    64 Nd6b273cf14b147ca94ce8ca5ae2d730a
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009353651
    66 https://doi.org/10.1007/s10207-014-0241-1
    67 schema:sdDatePublished 2021-12-01T19:30
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N8330f217a720446fa06f677bd2ad9abe
    70 schema:url https://doi.org/10.1007/s10207-014-0241-1
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N2e8ab8f537c44042bb96c69d38e10388 rdf:first sg:person.014543331374.90
    75 rdf:rest N688ff6f868224adb8050a1f918cc93da
    76 N621ed273d992457a9a3714a3fc520ba4 schema:issueNumber 2
    77 rdf:type schema:PublicationIssue
    78 N688ff6f868224adb8050a1f918cc93da rdf:first sg:person.012101617542.63
    79 rdf:rest Ne9cd62b44704449ba5d50c03c9077fc4
    80 N74e0f33cb112476b81eccfcc42611573 schema:name dimensions_id
    81 schema:value pub.1009353651
    82 rdf:type schema:PropertyValue
    83 N8330f217a720446fa06f677bd2ad9abe schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Nd6b273cf14b147ca94ce8ca5ae2d730a schema:name doi
    86 schema:value 10.1007/s10207-014-0241-1
    87 rdf:type schema:PropertyValue
    88 Ne9cd62b44704449ba5d50c03c9077fc4 rdf:first sg:person.010143067443.79
    89 rdf:rest rdf:nil
    90 Nef92ecc54be244399539fcfaeb1dcf04 schema:volumeNumber 14
    91 rdf:type schema:PublicationVolume
    92 Nf3a1b99ccd4c4589b288ec06c839431c rdf:first sg:person.010771614070.63
    93 rdf:rest N2e8ab8f537c44042bb96c69d38e10388
    94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Information and Computing Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Commerce, Management, Tourism and Services
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136826 schema:issn 1615-5262
    101 1615-5270
    102 schema:name International Journal of Information Security
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.010143067443.79 schema:affiliation grid-institutes:grid.6546.1
    106 schema:familyName Hollick
    107 schema:givenName Matthias
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143067443.79
    109 rdf:type schema:Person
    110 sg:person.010771614070.63 schema:affiliation grid-institutes:grid.6546.1
    111 schema:familyName Riecker
    112 schema:givenName Michael
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010771614070.63
    114 rdf:type schema:Person
    115 sg:person.012101617542.63 schema:affiliation grid-institutes:grid.6546.1
    116 schema:familyName El Bansarkhani
    117 schema:givenName Rachid
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101617542.63
    119 rdf:type schema:Person
    120 sg:person.014543331374.90 schema:affiliation grid-institutes:grid.6546.1
    121 schema:familyName Biedermann
    122 schema:givenName Sebastian
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331374.90
    124 rdf:type schema:Person
    125 sg:pub.10.1007/978-3-540-68351-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052896772
    126 https://doi.org/10.1007/978-3-540-68351-3_8
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-642-13651-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050140420
    129 https://doi.org/10.1007/978-3-642-13651-1_16
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-642-33368-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016214996
    132 https://doi.org/10.1007/978-3-642-33368-2_1
    133 rdf:type schema:CreativeWork
    134 grid-institutes:grid.6546.1 schema:alternateName Cryptography and Computational Algebra, Technische Universität Darmstadt, Darmstadt, Germany
    135 Secure Mobile Networking Lab, Technische Universität Darmstadt, Darmstadt, Germany
    136 Security Engineering Group, Technische Universität Darmstadt, Darmstadt, Germany
    137 schema:name Cryptography and Computational Algebra, Technische Universität Darmstadt, Darmstadt, Germany
    138 Secure Mobile Networking Lab, Technische Universität Darmstadt, Darmstadt, Germany
    139 Security Engineering Group, Technische Universität Darmstadt, Darmstadt, Germany
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...