Efficient trace and revoke schemes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09-30

AUTHORS

Moni Naor, Benny Pinkas

ABSTRACT

Our goal is to design encryption schemes for mass distribution of data , which enable to (1) deter users from leaking their personal keys, (2) trace the identities of users whose keys were used to construct illegal decryption devices, and (3) revoke these keys as to render the devices dysfunctional. We start by designing an efficient revocation scheme, based on secret sharing. It can remove up to t parties, is secure against coalitions of up to t users, and is more efficient than previous schemes with the same properties. We then show how to enhance the revocation scheme with traitor tracing and self-enforcement properties. More precisely, how to construct schemes such that (1) each user’s personal key contains some sensitive information of that user (e.g., the user’s credit card number), in order to make users reluctant to disclose their keys. (2) An illegal decryption device discloses the identity of users that contributed keys to construct the device. And, (3) it is possible to revoke the keys of corrupt users. For the last point, it is important to be able to do so without publicly disclosing the sensitive information. More... »

PAGES

411-424

References to SciGraph publications

  • 1998. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack in ADVANCES IN CRYPTOLOGY — CRYPTO '98
  • 1999-04-15. Efficient Communication-Storage Tradeoffs for Multicast Encryption in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’99
  • 1999. A Quick Group Key Distribution Scheme with “Entity Revocation” in ADVANCES IN CRYPTOLOGY - ASIACRYPT’99
  • 1994. Broadcast Encryption in ADVANCES IN CRYPTOLOGY — CRYPTO’ 93
  • 2001-08-02. Revocation and Tracing Schemes for Stateless Receivers in ADVANCES IN CRYPTOLOGY — CRYPTO 2001
  • 1999-12-16. Efficient Methods for Integrating Traceability and Broadcast Encryption in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 1998. Threshold traitor tracing in ADVANCES IN CRYPTOLOGY — CRYPTO '98
  • 1998. Optimum traitor tracing and asymmetric schemes in ADVANCES IN CRYPTOLOGY — EUROCRYPT'98
  • 1985. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms in ADVANCES IN CRYPTOLOGY
  • 1994. Tracing Traitors in ADVANCES IN CRYPTOLOGY — CRYPTO ’94
  • 1999-12-16. An Efficient Public Key Traitor Tracing Scheme in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 1995. Collusion-Secure Fingerprinting for Digital Data in ADVANCES IN CRYPTOLOGY — CRYPT0’ 95
  • 1999. Key Preassigned Traceability Schemes for Broadcast Encryption in SELECTED AREAS IN CRYPTOGRAPHY
  • 1996. A secure, robust watermark for multimedia in INFORMATION HIDING
  • 1998. The Decision Diffie-Hellman problem in ALGORITHMIC NUMBER THEORY
  • 2001-08-02. Self Protecting Pirates and Black-Box Traitor Tracing in ADVANCES IN CRYPTOLOGY — CRYPTO 2001
  • 1999-12-16. Coding Constructions for Blacklisting Problems without Computational Assumptions in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10207-010-0121-2

    DOI

    http://dx.doi.org/10.1007/s10207-010-0121-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011632654


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Applied Math, Weizmann Institute of Science, 76100, Rehovot, Israel", 
              "id": "http://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "Department of Computer Science and Applied Math, Weizmann Institute of Science, 76100, Rehovot, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naor", 
            "givenName": "Moni", 
            "id": "sg:person.07776170271.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Haifa, 31905, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/grid.18098.38", 
              "name": [
                "Department of Computer Science, University of Haifa, 31905, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinkas", 
            "givenName": "Benny", 
            "id": "sg:person.07416054235.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416054235.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-48405-1_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053365248", 
              "https://doi.org/10.1007/3-540-48405-1_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48892-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007926879", 
              "https://doi.org/10.1007/3-540-48892-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44750-4_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045814860", 
              "https://doi.org/10.1007/3-540-44750-4_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48658-5_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009720385", 
              "https://doi.org/10.1007/3-540-48658-5_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035636745", 
              "https://doi.org/10.1007/3-540-48910-x_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39568-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004282354", 
              "https://doi.org/10.1007/3-540-39568-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0054123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012329968", 
              "https://doi.org/10.1007/bfb0054123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48000-6_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006095372", 
              "https://doi.org/10.1007/978-3-540-48000-6_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0055750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011574367", 
              "https://doi.org/10.1007/bfb0055750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014430905", 
              "https://doi.org/10.1007/3-540-48405-1_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0054851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047964124", 
              "https://doi.org/10.1007/bfb0054851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61996-8_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042607004", 
              "https://doi.org/10.1007/3-540-61996-8_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017037188", 
              "https://doi.org/10.1007/3-540-44647-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0055717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018955583", 
              "https://doi.org/10.1007/bfb0055717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043292390", 
              "https://doi.org/10.1007/3-540-48405-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44647-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026641371", 
              "https://doi.org/10.1007/3-540-44647-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48329-2_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033844298", 
              "https://doi.org/10.1007/3-540-48329-2_40"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09-30", 
        "datePublishedReg": "2010-09-30", 
        "description": "Our goal is to design encryption schemes for mass distribution of data , which enable to (1) deter users from leaking their personal keys, (2) trace the identities of users whose keys were used to construct illegal decryption devices, and (3) revoke these keys as to render the devices dysfunctional. We start by designing an efficient revocation scheme, based on secret sharing. It can remove up to t parties, is secure against coalitions of up to t users, and is more efficient than previous schemes with the same properties. We then show how to enhance the revocation scheme with traitor tracing and self-enforcement properties. More precisely, how to construct schemes such that (1) each user\u2019s personal key contains some sensitive information of that user (e.g., the user\u2019s credit card number), in order to make users reluctant to disclose their keys. (2) An illegal decryption device discloses the identity of users that contributed keys to construct the device. And, (3) it is possible to revoke the keys of corrupt users. For the last point, it is important to be able to do so without publicly disclosing the sensitive information.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10207-010-0121-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136826", 
            "issn": [
              "1615-5262", 
              "1615-5270"
            ], 
            "name": "International Journal of Information Security", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "identity of users", 
          "personal key", 
          "sensitive information", 
          "revocation scheme", 
          "decryption device", 
          "efficient revocation scheme", 
          "corrupt users", 
          "encryption scheme", 
          "traitor tracing", 
          "secret sharing", 
          "revoke scheme", 
          "previous schemes", 
          "users", 
          "efficient trace", 
          "scheme", 
          "key", 
          "information", 
          "devices", 
          "sharing", 
          "last point", 
          "traces", 
          "goal", 
          "tracing", 
          "parties", 
          "order", 
          "data", 
          "coalition", 
          "same properties", 
          "point", 
          "identity", 
          "properties", 
          "distribution", 
          "mass distribution", 
          "illegal decryption devices", 
          "self-enforcement properties", 
          "user\u2019s personal key"
        ], 
        "name": "Efficient trace and revoke schemes", 
        "pagination": "411-424", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011632654"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10207-010-0121-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10207-010-0121-2", 
          "https://app.dimensions.ai/details/publication/pub.1011632654"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_502.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10207-010-0121-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10207-010-0121-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10207-010-0121-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10207-010-0121-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10207-010-0121-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      22 PREDICATES      78 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10207-010-0121-2 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author Ncb8cc621b6aa48299da6fdb6af75b938
    4 schema:citation sg:pub.10.1007/3-540-39568-7_2
    5 sg:pub.10.1007/3-540-44647-8_3
    6 sg:pub.10.1007/3-540-44647-8_4
    7 sg:pub.10.1007/3-540-44750-4_36
    8 sg:pub.10.1007/3-540-48329-2_40
    9 sg:pub.10.1007/3-540-48405-1_22
    10 sg:pub.10.1007/3-540-48405-1_24
    11 sg:pub.10.1007/3-540-48405-1_38
    12 sg:pub.10.1007/3-540-48658-5_25
    13 sg:pub.10.1007/3-540-48892-8_12
    14 sg:pub.10.1007/3-540-48910-x_32
    15 sg:pub.10.1007/3-540-61996-8_41
    16 sg:pub.10.1007/978-3-540-48000-6_27
    17 sg:pub.10.1007/bfb0054123
    18 sg:pub.10.1007/bfb0054851
    19 sg:pub.10.1007/bfb0055717
    20 sg:pub.10.1007/bfb0055750
    21 schema:datePublished 2010-09-30
    22 schema:datePublishedReg 2010-09-30
    23 schema:description Our goal is to design encryption schemes for mass distribution of data , which enable to (1) deter users from leaking their personal keys, (2) trace the identities of users whose keys were used to construct illegal decryption devices, and (3) revoke these keys as to render the devices dysfunctional. We start by designing an efficient revocation scheme, based on secret sharing. It can remove up to t parties, is secure against coalitions of up to t users, and is more efficient than previous schemes with the same properties. We then show how to enhance the revocation scheme with traitor tracing and self-enforcement properties. More precisely, how to construct schemes such that (1) each user’s personal key contains some sensitive information of that user (e.g., the user’s credit card number), in order to make users reluctant to disclose their keys. (2) An illegal decryption device discloses the identity of users that contributed keys to construct the device. And, (3) it is possible to revoke the keys of corrupt users. For the last point, it is important to be able to do so without publicly disclosing the sensitive information.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N69b6018fb56a4281be30b3ddc0fe302e
    28 Nd698620258a4493eba48c04300c89da8
    29 sg:journal.1136826
    30 schema:keywords coalition
    31 corrupt users
    32 data
    33 decryption device
    34 devices
    35 distribution
    36 efficient revocation scheme
    37 efficient trace
    38 encryption scheme
    39 goal
    40 identity
    41 identity of users
    42 illegal decryption devices
    43 information
    44 key
    45 last point
    46 mass distribution
    47 order
    48 parties
    49 personal key
    50 point
    51 previous schemes
    52 properties
    53 revocation scheme
    54 revoke scheme
    55 same properties
    56 scheme
    57 secret sharing
    58 self-enforcement properties
    59 sensitive information
    60 sharing
    61 traces
    62 tracing
    63 traitor tracing
    64 users
    65 user’s personal key
    66 schema:name Efficient trace and revoke schemes
    67 schema:pagination 411-424
    68 schema:productId N21c9517b0a4b4a1da012f62f866a60d3
    69 Nbf7f169736dd42d4b5ba91d0e4b2e8a8
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632654
    71 https://doi.org/10.1007/s10207-010-0121-2
    72 schema:sdDatePublished 2022-01-01T18:22
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher Nf6f5c210d7974c7087cfbd44a6ff102b
    75 schema:url https://doi.org/10.1007/s10207-010-0121-2
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N21c9517b0a4b4a1da012f62f866a60d3 schema:name doi
    80 schema:value 10.1007/s10207-010-0121-2
    81 rdf:type schema:PropertyValue
    82 N69b6018fb56a4281be30b3ddc0fe302e schema:issueNumber 6
    83 rdf:type schema:PublicationIssue
    84 Na518dbaa63c34a0a9e29c470549131ec rdf:first sg:person.07416054235.47
    85 rdf:rest rdf:nil
    86 Nbf7f169736dd42d4b5ba91d0e4b2e8a8 schema:name dimensions_id
    87 schema:value pub.1011632654
    88 rdf:type schema:PropertyValue
    89 Ncb8cc621b6aa48299da6fdb6af75b938 rdf:first sg:person.07776170271.83
    90 rdf:rest Na518dbaa63c34a0a9e29c470549131ec
    91 Nd698620258a4493eba48c04300c89da8 schema:volumeNumber 9
    92 rdf:type schema:PublicationVolume
    93 Nf6f5c210d7974c7087cfbd44a6ff102b schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Data Format
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136826 schema:issn 1615-5262
    102 1615-5270
    103 schema:name International Journal of Information Security
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.07416054235.47 schema:affiliation grid-institutes:grid.18098.38
    107 schema:familyName Pinkas
    108 schema:givenName Benny
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416054235.47
    110 rdf:type schema:Person
    111 sg:person.07776170271.83 schema:affiliation grid-institutes:grid.13992.30
    112 schema:familyName Naor
    113 schema:givenName Moni
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83
    115 rdf:type schema:Person
    116 sg:pub.10.1007/3-540-39568-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004282354
    117 https://doi.org/10.1007/3-540-39568-7_2
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/3-540-44647-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017037188
    120 https://doi.org/10.1007/3-540-44647-8_3
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/3-540-44647-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026641371
    123 https://doi.org/10.1007/3-540-44647-8_4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/3-540-44750-4_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045814860
    126 https://doi.org/10.1007/3-540-44750-4_36
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/3-540-48329-2_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033844298
    129 https://doi.org/10.1007/3-540-48329-2_40
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/3-540-48405-1_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365248
    132 https://doi.org/10.1007/3-540-48405-1_22
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/3-540-48405-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292390
    135 https://doi.org/10.1007/3-540-48405-1_24
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/3-540-48405-1_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014430905
    138 https://doi.org/10.1007/3-540-48405-1_38
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/3-540-48658-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009720385
    141 https://doi.org/10.1007/3-540-48658-5_25
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/3-540-48892-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007926879
    144 https://doi.org/10.1007/3-540-48892-8_12
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/3-540-48910-x_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035636745
    147 https://doi.org/10.1007/3-540-48910-x_32
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/3-540-61996-8_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042607004
    150 https://doi.org/10.1007/3-540-61996-8_41
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-540-48000-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006095372
    153 https://doi.org/10.1007/978-3-540-48000-6_27
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bfb0054123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012329968
    156 https://doi.org/10.1007/bfb0054123
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bfb0054851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047964124
    159 https://doi.org/10.1007/bfb0054851
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bfb0055717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018955583
    162 https://doi.org/10.1007/bfb0055717
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bfb0055750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011574367
    165 https://doi.org/10.1007/bfb0055750
    166 rdf:type schema:CreativeWork
    167 grid-institutes:grid.13992.30 schema:alternateName Department of Computer Science and Applied Math, Weizmann Institute of Science, 76100, Rehovot, Israel
    168 schema:name Department of Computer Science and Applied Math, Weizmann Institute of Science, 76100, Rehovot, Israel
    169 rdf:type schema:Organization
    170 grid-institutes:grid.18098.38 schema:alternateName Department of Computer Science, University of Haifa, 31905, Haifa, Israel
    171 schema:name Department of Computer Science, University of Haifa, 31905, Haifa, Israel
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...