Coherent modeling of mortality patterns for age-specific subgroups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Giuseppe Giordano, Steven Haberman, Maria Russolillo

ABSTRACT

The recent actuarial literature has shown that mortality patterns and trajectories in closely related populations are similar in some respects and that small differences are unlikely to increase in the long run. The common feeling is that mortality forecasts for individual countries could be improved by taking into account the patterns from a larger group. Starting from this consideration, we apply the three-way Lee–Carter model to a group of countries, by extending the bilinear LC model to a three-way structure, which incorporates a further component in the decomposition of the log-mortality rates. From a methodological point of view, there are several issues to deal with when focusing on such kind of data. In the presence of a three-way data structure, several choices on the pretreatment of the data could affect the whole modeling process. This kind of analysis is useful to assess the source of variation in the raw mortality data, before the extraction of the rank-one components by the LC model. The proposed procedure is used to extract an ad hoc time mortality trend parameter for age-specific subgroups. The results show that the proposed strategy leads to a more coherent description of mortality for age-specific subgroups. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-019-00245-y

DOI

http://dx.doi.org/10.1007/s10203-019-00245-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113199697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Department of Political and Social Studies, University of Salerno, Campus di Fisciano, Fisciano, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giordano", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City, University of London", 
          "id": "https://www.grid.ac/institutes/grid.28577.3f", 
          "name": [
            "Faculty of Actuarial Science and Insurance, Cass Business School, City, University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haberman", 
        "givenName": "Steven", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Department of Economics and Statistics, University of Salerno, Campus di Fisciano, Fisciano, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russolillo", 
        "givenName": "Maria", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/asmb.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000616726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asmb.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000616726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002217813", 
          "https://doi.org/10.1007/bf02289464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002217813", 
          "https://doi.org/10.1007/bf02289464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2012.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025470127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2012.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026378534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03461231003611933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044104671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/2153-3792.1115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049909400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1728-4457.2001.00155.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053494225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1353/dem.2005.0021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053678431", 
          "https://doi.org/10.1353/dem.2005.0021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10475265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1939574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069663415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2290201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069863597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/asb.2017.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091376429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470238004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470238004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10920277.2017.1377620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100293505"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "The recent actuarial literature has shown that mortality patterns and trajectories in closely related populations are similar in some respects and that small differences are unlikely to increase in the long run. The common feeling is that mortality forecasts for individual countries could be improved by taking into account the patterns from a larger group. Starting from this consideration, we apply the three-way Lee\u2013Carter model to a group of countries, by extending the bilinear LC model to a three-way structure, which incorporates a further component in the decomposition of the log-mortality rates. From a methodological point of view, there are several issues to deal with when focusing on such kind of data. In the presence of a three-way data structure, several choices on the pretreatment of the data could affect the whole modeling process. This kind of analysis is useful to assess the source of variation in the raw mortality data, before the extraction of the rank-one components by the LC model. The proposed procedure is used to extract an ad hoc time mortality trend parameter for age-specific subgroups. The results show that the proposed strategy leads to a more coherent description of mortality for age-specific subgroups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10203-019-00245-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "type": "Periodical"
      }
    ], 
    "name": "Coherent modeling of mortality patterns for age-specific subgroups", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-019-00245-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75751b7eed4de62980c318233deeedd206ff54508eb1b2a9eb09f0c4bbfa54a1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113199697"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-019-00245-y", 
      "https://app.dimensions.ai/details/publication/pub.1113199697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56159_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10203-019-00245-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00245-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00245-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00245-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00245-y'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-019-00245-y schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Ne691576e79e94c2c832566d055609acd
4 schema:citation sg:pub.10.1007/bf02289464
5 sg:pub.10.1353/dem.2005.0021
6 https://doi.org/10.1002/9780470238004
7 https://doi.org/10.1002/asmb.781
8 https://doi.org/10.1016/j.insmatheco.2012.09.008
9 https://doi.org/10.1016/j.insmatheco.2012.12.009
10 https://doi.org/10.1017/asb.2017.18
11 https://doi.org/10.1080/01621459.1992.10475265
12 https://doi.org/10.1080/03461231003611933
13 https://doi.org/10.1080/10920277.2017.1377620
14 https://doi.org/10.1111/j.1728-4457.2001.00155.x
15 https://doi.org/10.2202/2153-3792.1115
16 https://doi.org/10.2307/1939574
17 https://doi.org/10.2307/2290201
18 schema:datePublished 2019-04-02
19 schema:datePublishedReg 2019-04-02
20 schema:description The recent actuarial literature has shown that mortality patterns and trajectories in closely related populations are similar in some respects and that small differences are unlikely to increase in the long run. The common feeling is that mortality forecasts for individual countries could be improved by taking into account the patterns from a larger group. Starting from this consideration, we apply the three-way Lee–Carter model to a group of countries, by extending the bilinear LC model to a three-way structure, which incorporates a further component in the decomposition of the log-mortality rates. From a methodological point of view, there are several issues to deal with when focusing on such kind of data. In the presence of a three-way data structure, several choices on the pretreatment of the data could affect the whole modeling process. This kind of analysis is useful to assess the source of variation in the raw mortality data, before the extraction of the rank-one components by the LC model. The proposed procedure is used to extract an ad hoc time mortality trend parameter for age-specific subgroups. The results show that the proposed strategy leads to a more coherent description of mortality for age-specific subgroups.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1313765
25 schema:name Coherent modeling of mortality patterns for age-specific subgroups
26 schema:pagination 1-16
27 schema:productId N89bbdb17ee49409c8414b4449fab1156
28 Nd6795fc764054aac9e8c1cb5b4a8490d
29 Nde0ddbb82f174b4c896484afb5f2afc2
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113199697
31 https://doi.org/10.1007/s10203-019-00245-y
32 schema:sdDatePublished 2019-04-15T09:13
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nc32c0885caa649068868148490c8ee9b
35 schema:url https://link.springer.com/10.1007%2Fs10203-019-00245-y
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1f33ea61ccdc4344bd4319422c382624 schema:affiliation https://www.grid.ac/institutes/grid.28577.3f
40 schema:familyName Haberman
41 schema:givenName Steven
42 rdf:type schema:Person
43 N3f6c949dde184690af0e76895637ad32 rdf:first N41923e81155e4d78ac2a77f5c40f4c2f
44 rdf:rest rdf:nil
45 N41923e81155e4d78ac2a77f5c40f4c2f schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
46 schema:familyName Russolillo
47 schema:givenName Maria
48 rdf:type schema:Person
49 N89bbdb17ee49409c8414b4449fab1156 schema:name dimensions_id
50 schema:value pub.1113199697
51 rdf:type schema:PropertyValue
52 N8df50ec9781c4077a1fa927cad379dd6 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
53 schema:familyName Giordano
54 schema:givenName Giuseppe
55 rdf:type schema:Person
56 Nb36b55a57ac74d8daf5480956d4aefeb rdf:first N1f33ea61ccdc4344bd4319422c382624
57 rdf:rest N3f6c949dde184690af0e76895637ad32
58 Nc32c0885caa649068868148490c8ee9b schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd6795fc764054aac9e8c1cb5b4a8490d schema:name doi
61 schema:value 10.1007/s10203-019-00245-y
62 rdf:type schema:PropertyValue
63 Nde0ddbb82f174b4c896484afb5f2afc2 schema:name readcube_id
64 schema:value 75751b7eed4de62980c318233deeedd206ff54508eb1b2a9eb09f0c4bbfa54a1
65 rdf:type schema:PropertyValue
66 Ne691576e79e94c2c832566d055609acd rdf:first N8df50ec9781c4077a1fa927cad379dd6
67 rdf:rest Nb36b55a57ac74d8daf5480956d4aefeb
68 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
69 schema:name Medical and Health Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
72 schema:name Public Health and Health Services
73 rdf:type schema:DefinedTerm
74 sg:journal.1313765 schema:issn 1129-6569
75 1593-8883
76 schema:name Decisions in Economics and Finance
77 rdf:type schema:Periodical
78 sg:pub.10.1007/bf02289464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217813
79 https://doi.org/10.1007/bf02289464
80 rdf:type schema:CreativeWork
81 sg:pub.10.1353/dem.2005.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053678431
82 https://doi.org/10.1353/dem.2005.0021
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/9780470238004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661670
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1002/asmb.781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000616726
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.insmatheco.2012.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026378534
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.insmatheco.2012.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025470127
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/asb.2017.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091376429
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/01621459.1992.10475265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304294
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1080/03461231003611933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044104671
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/10920277.2017.1377620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100293505
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1111/j.1728-4457.2001.00155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053494225
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2202/2153-3792.1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049909400
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1939574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069663415
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/2290201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069863597
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
109 schema:name Department of Economics and Statistics, University of Salerno, Campus di Fisciano, Fisciano, Salerno, Italy
110 Department of Political and Social Studies, University of Salerno, Campus di Fisciano, Fisciano, Salerno, Italy
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.28577.3f schema:alternateName City, University of London
113 schema:name Faculty of Actuarial Science and Insurance, Cass Business School, City, University of London, London, UK
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...