Small sample properties of ML estimator in Vasicek and CIR models: a simulation experiment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-19

AUTHORS

Giuseppina Albano, Michele La Rocca, Cira Perna

ABSTRACT

In this paper we analyze small sample properties of the ML estimation procedure in Vasicek and CIR models. In particular, we consider short time series, with a length between 20 and 200, typically values observed in the field of survival data. We perform a simulation study in order to investigate which properties of the parameter estimators still remain valid and to evaluate the effect of a bootstrap bias correction method. The results show that the bias of the estimators can be really strong for small samples and the relative bias seems to be worse when the true parameters of the models are near to the nonstationarity case. The bootstrap bias correction is enough efficient in correcting the bias also for very small sample sizes, but the increase in RMSE of the estimator is greater as much as smaller is the bias in the ML estimator. Moreover, the bootstrap correction does not improve the performance of the tests on the parameters. More... »

PAGES

1-15

References to SciGraph publications

  • 2018. Small Sample Analysis in Diffusion Processes: A Simulation Study in MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE
  • Journal

    TITLE

    Decisions in Economics and Finance

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10203-019-00237-y

    DOI

    http://dx.doi.org/10.1007/s10203-019-00237-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112226384


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Salerno", 
              "id": "https://www.grid.ac/institutes/grid.11780.3f", 
              "name": [
                "Department of Economics and Statistics, University of Salerno, Fisciano, Salerno, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Albano", 
            "givenName": "Giuseppina", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salerno", 
              "id": "https://www.grid.ac/institutes/grid.11780.3f", 
              "name": [
                "Department of Economics and Statistics, University of Salerno, Fisciano, Salerno, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "La Rocca", 
            "givenName": "Michele", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salerno", 
              "id": "https://www.grid.ac/institutes/grid.11780.3f", 
              "name": [
                "Department of Economics and Statistics, University of Salerno, Fisciano, Salerno, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perna", 
            "givenName": "Cira", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jeconom.2008.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001224330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/for.1005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019593724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021328925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2016.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027994041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1751-5823.2004.tb00241.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034640892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1751-5823.2004.tb00241.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034640892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.insmatheco.2004.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054736563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/073500102288618397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064198920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/009053607000000622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064389087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1032280214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21314/jois.2013.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068977318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.3070891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093103983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-89824-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105642380", 
              "https://doi.org/10.1007/978-3-319-89824-7_4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-19", 
        "datePublishedReg": "2019-02-19", 
        "description": "In this paper we analyze small sample properties of the ML estimation procedure in Vasicek and CIR models. In particular, we consider short time series, with a length between 20 and 200, typically values observed in the field of survival data. We perform a simulation study in order to investigate which properties of the parameter estimators still remain valid and to evaluate the effect of a bootstrap bias correction method. The results show that the bias of the estimators can be really strong for small samples and the relative bias seems to be worse when the true parameters of the models are near to the nonstationarity case. The bootstrap bias correction is enough efficient in correcting the bias also for very small sample sizes, but the increase in RMSE of the estimator is greater as much as smaller is the bias in the ML estimator. Moreover, the bootstrap correction does not improve the performance of the tests on the parameters.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10203-019-00237-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1313765", 
            "issn": [
              "1129-6569", 
              "1593-8883"
            ], 
            "name": "Decisions in Economics and Finance", 
            "type": "Periodical"
          }
        ], 
        "name": "Small sample properties of ML estimator in Vasicek and CIR models: a simulation experiment", 
        "pagination": "1-15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8366245cca687ae5d3bb564c09197cdbca65fa21b7e48db610a9ef1d3d61a9a6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10203-019-00237-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112226384"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10203-019-00237-y", 
          "https://app.dimensions.ai/details/publication/pub.1112226384"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47997_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10203-019-00237-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00237-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00237-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00237-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00237-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      36 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10203-019-00237-y schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Na6146f8299ee42f5866ea1934355a04e
    4 schema:citation sg:pub.10.1007/978-3-319-89824-7_4
    5 https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f
    6 https://doi.org/10.1002/for.1005
    7 https://doi.org/10.1016/j.energy.2016.07.002
    8 https://doi.org/10.1016/j.insmatheco.2004.05.003
    9 https://doi.org/10.1016/j.jeconom.2008.11.001
    10 https://doi.org/10.1111/j.1751-5823.2004.tb00241.x
    11 https://doi.org/10.1198/073500102288618397
    12 https://doi.org/10.1214/009053607000000622
    13 https://doi.org/10.1214/ss/1032280214
    14 https://doi.org/10.21314/jois.2013.031
    15 https://doi.org/10.2139/ssrn.3070891
    16 schema:datePublished 2019-02-19
    17 schema:datePublishedReg 2019-02-19
    18 schema:description In this paper we analyze small sample properties of the ML estimation procedure in Vasicek and CIR models. In particular, we consider short time series, with a length between 20 and 200, typically values observed in the field of survival data. We perform a simulation study in order to investigate which properties of the parameter estimators still remain valid and to evaluate the effect of a bootstrap bias correction method. The results show that the bias of the estimators can be really strong for small samples and the relative bias seems to be worse when the true parameters of the models are near to the nonstationarity case. The bootstrap bias correction is enough efficient in correcting the bias also for very small sample sizes, but the increase in RMSE of the estimator is greater as much as smaller is the bias in the ML estimator. Moreover, the bootstrap correction does not improve the performance of the tests on the parameters.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf sg:journal.1313765
    23 schema:name Small sample properties of ML estimator in Vasicek and CIR models: a simulation experiment
    24 schema:pagination 1-15
    25 schema:productId N6bc5961dd9794056af65d080f35cda3c
    26 Nc1a4af860118482d86ce23273b355f2a
    27 Ne276c4d607c540f2982cb1831a5c9a45
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112226384
    29 https://doi.org/10.1007/s10203-019-00237-y
    30 schema:sdDatePublished 2019-04-11T09:14
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Nfdffde2fb5af44f9990dd380fcb1eafd
    33 schema:url https://link.springer.com/10.1007%2Fs10203-019-00237-y
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N3707803e10404c48a5b7349e649bdfde schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
    38 schema:familyName Perna
    39 schema:givenName Cira
    40 rdf:type schema:Person
    41 N6bc5961dd9794056af65d080f35cda3c schema:name doi
    42 schema:value 10.1007/s10203-019-00237-y
    43 rdf:type schema:PropertyValue
    44 N76414520752c40fe97bb5cf325e65ab7 rdf:first N3707803e10404c48a5b7349e649bdfde
    45 rdf:rest rdf:nil
    46 Na6146f8299ee42f5866ea1934355a04e rdf:first Nf5a33de8a2c44c1083ff62fc51dfb7cc
    47 rdf:rest Nf696326cd04c436a8d47f82e845a1dd1
    48 Nb946b79db30f45c0949b87822e865c2c schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
    49 schema:familyName La Rocca
    50 schema:givenName Michele
    51 rdf:type schema:Person
    52 Nc1a4af860118482d86ce23273b355f2a schema:name readcube_id
    53 schema:value 8366245cca687ae5d3bb564c09197cdbca65fa21b7e48db610a9ef1d3d61a9a6
    54 rdf:type schema:PropertyValue
    55 Ne276c4d607c540f2982cb1831a5c9a45 schema:name dimensions_id
    56 schema:value pub.1112226384
    57 rdf:type schema:PropertyValue
    58 Nf5a33de8a2c44c1083ff62fc51dfb7cc schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
    59 schema:familyName Albano
    60 schema:givenName Giuseppina
    61 rdf:type schema:Person
    62 Nf696326cd04c436a8d47f82e845a1dd1 rdf:first Nb946b79db30f45c0949b87822e865c2c
    63 rdf:rest N76414520752c40fe97bb5cf325e65ab7
    64 Nfdffde2fb5af44f9990dd380fcb1eafd schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Statistics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1313765 schema:issn 1129-6569
    73 1593-8883
    74 schema:name Decisions in Economics and Finance
    75 rdf:type schema:Periodical
    76 sg:pub.10.1007/978-3-319-89824-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105642380
    77 https://doi.org/10.1007/978-3-319-89824-7_4
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1021328925
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1002/for.1005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019593724
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.energy.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027994041
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.insmatheco.2004.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054736563
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.jeconom.2008.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001224330
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1111/j.1751-5823.2004.tb00241.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034640892
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1198/073500102288618397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198920
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1214/009053607000000622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389087
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1214/ss/1032280214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409500
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.21314/jois.2013.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068977318
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.2139/ssrn.3070891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093103983
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
    102 schema:name Department of Economics and Statistics, University of Salerno, Fisciano, Salerno, Italy
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...