A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

José L. Vilar-Zanón, Olivia Peraita-Ezcurra

ABSTRACT

We develop a new methodology to retrieve risk neutral probabilities (equivalent martingale measure) with maximum entropy from quoted option prices. We assume the no arbitrage hypothesis and model the efficient market hypothesis by means of a maximum entropic risk neutral distribution. The method is free of parametric assumption except for the simulation of the distribution support, for which purpose we can choose any stochastic model. Firstly, we innovate in the minimization of a different f-divergence than Kullback–Leibler’s relative entropy, resulting in the total variation distance. We minimize it by means of linear goal programming, thus guaranteeing a fast numerical resolution. The method values non-traded assets finding a RNP minimizing its f-divergence to the maximum entropy distribution over a simulated support—the uniform distribution—calibrated to the benchmarks prices constraints. Our second innovation is that in an incomplete market, we can increase the f-divergence from its minimum to obtain any asset price belonging to the interval satisfying the non-existence of an arbitrage portfolio, without presupposing any utility function for the decision maker. We exemplify our methodology by means of synthetic and real-world cases, showing that our methodology can either price non-traded assets or interpolate and extrapolate a volatility surface. More... »

PAGES

1-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-019-00236-z

DOI

http://dx.doi.org/10.1007/s10203-019-00236-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Department of Financial and Actuarial Economics and Statistics, Universidad Complutense de Madrid, Campus de Somosaguas, 28223, Pozuelo de Alarc\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilar-Zan\u00f3n", 
        "givenName": "Jos\u00e9 L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Banco Santander (Spain)", 
          "id": "https://www.grid.ac/institutes/grid.432419.9", 
          "name": [
            "Capital Management, Banco de Santander, 28660, Boadilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peraita-Ezcurra", 
        "givenName": "Olivia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-4076(01)00092-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002298764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2014.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003852204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9965.00079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012956299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1096-9934(200103)21:3<213::aid-fut2>3.0.co;2-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031359391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1889(01)00087-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033492845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-011-0167-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035390605", 
          "https://doi.org/10.1007/s00780-011-0167-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2007.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038468783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1996.tb05219.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038596146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-013-0349-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039521020", 
          "https://doi.org/10.1007/s10957-013-0349-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039732215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039732215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wilm.10435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044111791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2013.819986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045358715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-6803.1990.tb00633.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/260062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058573543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/296025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058605851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100813245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219024901000882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062985825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219024998000242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062986705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2331318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069893174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2331391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069893232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5089/9781455202157.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072580009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2470/rf.v2004.n1.3925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085706057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cifer.2000.844611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094900684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.246063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102187433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109698724", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109698724", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470016450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1966.tb00626.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1966.tb00626.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457541"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "We develop a new methodology to retrieve risk neutral probabilities (equivalent martingale measure) with maximum entropy from quoted option prices. We assume the no arbitrage hypothesis and model the efficient market hypothesis by means of a maximum entropic risk neutral distribution. The method is free of parametric assumption except for the simulation of the distribution support, for which purpose we can choose any stochastic model. Firstly, we innovate in the minimization of a different f-divergence than Kullback\u2013Leibler\u2019s relative entropy, resulting in the total variation distance. We minimize it by means of linear goal programming, thus guaranteeing a fast numerical resolution. The method values non-traded assets finding a RNP minimizing its f-divergence to the maximum entropy distribution over a simulated support\u2014the uniform distribution\u2014calibrated to the benchmarks prices constraints. Our second innovation is that in an incomplete market, we can increase the f-divergence from its minimum to obtain any asset price belonging to the interval satisfying the non-existence of an arbitrage portfolio, without presupposing any utility function for the decision maker. We exemplify our methodology by means of synthetic and real-world cases, showing that our methodology can either price non-traded assets or interpolate and extrapolate a volatility surface.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10203-019-00236-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "type": "Periodical"
      }
    ], 
    "name": "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a0972468e3447ebf5b9adae3078ef0a5db077271f26f9c025070214735605ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-019-00236-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-019-00236-z", 
      "https://app.dimensions.ai/details/publication/pub.1112141623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37550_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10203-019-00236-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00236-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00236-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00236-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00236-z'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-019-00236-z schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nfc261865fc01444aa2f76869da1009ae
4 schema:citation sg:pub.10.1007/s00780-011-0167-7
5 sg:pub.10.1007/s10957-013-0349-x
6 https://app.dimensions.ai/details/publication/pub.1109698724
7 https://doi.org/10.1002/0470016450
8 https://doi.org/10.1002/1096-9934(200103)21:3<213::aid-fut2>3.0.co;2-h
9 https://doi.org/10.1002/wilm.10435
10 https://doi.org/10.1016/j.cam.2014.12.004
11 https://doi.org/10.1016/j.ejor.2007.02.041
12 https://doi.org/10.1016/j.jeconom.2005.06.031
13 https://doi.org/10.1016/s0165-1889(01)00087-2
14 https://doi.org/10.1016/s0304-4076(01)00092-6
15 https://doi.org/10.1080/14697688.2013.819986
16 https://doi.org/10.1086/260062
17 https://doi.org/10.1086/296025
18 https://doi.org/10.1109/cifer.2000.844611
19 https://doi.org/10.1111/1467-9965.00079
20 https://doi.org/10.1111/j.1475-6803.1990.tb00633.x
21 https://doi.org/10.1111/j.1540-6261.1996.tb05219.x
22 https://doi.org/10.1111/j.2517-6161.1966.tb00626.x
23 https://doi.org/10.1137/100813245
24 https://doi.org/10.1142/s0219024901000882
25 https://doi.org/10.1142/s0219024998000242
26 https://doi.org/10.2139/ssrn.246063
27 https://doi.org/10.2307/2331318
28 https://doi.org/10.2307/2331391
29 https://doi.org/10.2470/rf.v2004.n1.3925
30 https://doi.org/10.5089/9781455202157.001
31 schema:datePublished 2019-02-14
32 schema:datePublishedReg 2019-02-14
33 schema:description We develop a new methodology to retrieve risk neutral probabilities (equivalent martingale measure) with maximum entropy from quoted option prices. We assume the no arbitrage hypothesis and model the efficient market hypothesis by means of a maximum entropic risk neutral distribution. The method is free of parametric assumption except for the simulation of the distribution support, for which purpose we can choose any stochastic model. Firstly, we innovate in the minimization of a different f-divergence than Kullback–Leibler’s relative entropy, resulting in the total variation distance. We minimize it by means of linear goal programming, thus guaranteeing a fast numerical resolution. The method values non-traded assets finding a RNP minimizing its f-divergence to the maximum entropy distribution over a simulated support—the uniform distribution—calibrated to the benchmarks prices constraints. Our second innovation is that in an incomplete market, we can increase the f-divergence from its minimum to obtain any asset price belonging to the interval satisfying the non-existence of an arbitrage portfolio, without presupposing any utility function for the decision maker. We exemplify our methodology by means of synthetic and real-world cases, showing that our methodology can either price non-traded assets or interpolate and extrapolate a volatility surface.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1313765
38 schema:name A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy
39 schema:pagination 1-18
40 schema:productId N81714bc1e5964fdcb62d6fedcea7866f
41 Na06885db848f40c291c5148643f4154b
42 Nf507445c9226470f8d00427b6cc0baee
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141623
44 https://doi.org/10.1007/s10203-019-00236-z
45 schema:sdDatePublished 2019-04-11T09:06
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N20341ff3870847a09c10f5458d5db9ce
48 schema:url https://link.springer.com/10.1007%2Fs10203-019-00236-z
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1a9d7b9bbce542e991878cea1ca9d03a schema:affiliation https://www.grid.ac/institutes/grid.4795.f
53 schema:familyName Vilar-Zanón
54 schema:givenName José L.
55 rdf:type schema:Person
56 N20341ff3870847a09c10f5458d5db9ce schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N244ef29ffc044efcb7e80fb754c041f9 rdf:first Nf5d4b944de3d481ca4632d6119439587
59 rdf:rest rdf:nil
60 N81714bc1e5964fdcb62d6fedcea7866f schema:name dimensions_id
61 schema:value pub.1112141623
62 rdf:type schema:PropertyValue
63 Na06885db848f40c291c5148643f4154b schema:name readcube_id
64 schema:value 2a0972468e3447ebf5b9adae3078ef0a5db077271f26f9c025070214735605ea
65 rdf:type schema:PropertyValue
66 Nf507445c9226470f8d00427b6cc0baee schema:name doi
67 schema:value 10.1007/s10203-019-00236-z
68 rdf:type schema:PropertyValue
69 Nf5d4b944de3d481ca4632d6119439587 schema:affiliation https://www.grid.ac/institutes/grid.432419.9
70 schema:familyName Peraita-Ezcurra
71 schema:givenName Olivia
72 rdf:type schema:Person
73 Nfc261865fc01444aa2f76869da1009ae rdf:first N1a9d7b9bbce542e991878cea1ca9d03a
74 rdf:rest N244ef29ffc044efcb7e80fb754c041f9
75 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
76 schema:name Economics
77 rdf:type schema:DefinedTerm
78 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
79 schema:name Applied Economics
80 rdf:type schema:DefinedTerm
81 sg:journal.1313765 schema:issn 1129-6569
82 1593-8883
83 schema:name Decisions in Economics and Finance
84 rdf:type schema:Periodical
85 sg:pub.10.1007/s00780-011-0167-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035390605
86 https://doi.org/10.1007/s00780-011-0167-7
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10957-013-0349-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039521020
89 https://doi.org/10.1007/s10957-013-0349-x
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1109698724 schema:CreativeWork
92 https://doi.org/10.1002/0470016450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698724
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/1096-9934(200103)21:3<213::aid-fut2>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1031359391
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/wilm.10435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044111791
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.cam.2014.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003852204
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.ejor.2007.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038468783
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jeconom.2005.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039732215
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0165-1889(01)00087-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033492845
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0304-4076(01)00092-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002298764
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/14697688.2013.819986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045358715
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1086/260062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573543
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1086/296025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058605851
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/cifer.2000.844611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094900684
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1111/1467-9965.00079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012956299
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1111/j.1475-6803.1990.tb00633.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047176846
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1540-6261.1996.tb05219.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038596146
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1111/j.2517-6161.1966.tb00626.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110457541
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1137/100813245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859612
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1142/s0219024901000882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062985825
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1142/s0219024998000242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062986705
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2139/ssrn.246063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102187433
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2331318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069893174
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2307/2331391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069893232
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2470/rf.v2004.n1.3925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085706057
137 rdf:type schema:CreativeWork
138 https://doi.org/10.5089/9781455202157.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072580009
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.432419.9 schema:alternateName Banco Santander (Spain)
141 schema:name Capital Management, Banco de Santander, 28660, Boadilla, Spain
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
144 schema:name Department of Financial and Actuarial Economics and Statistics, Universidad Complutense de Madrid, Campus de Somosaguas, 28223, Pozuelo de Alarcón, Spain
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...