Possibilistic mean–variance portfolios versus probabilistic ones: the winner is... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-02

AUTHORS

Marco Corazza, Carla Nardelli

ABSTRACT

In this paper, we compare the mean–variance portfolio modeling based on the possibilistic representation of the future stock returns to the one based on the classical probabilistic modelization of the same returns. There exist several different definitions of possibilistic mean, possibilistic variance and possibilistic covariance. In this paper, we consider definitions recently proposed in the literature for modeling portfolio selection problems: the possibilistic mean and variance à la Carlsson–Fullér–Majlender, the lower possibilistic mean and variance, and the upper possibilistic mean and variance. In particular, we mean to answer to the following research questions: first, to check whether, from a methodological and theoretical standpoint, it is possible to detect elements of superiority of one of the two approaches with respect to the other one; then, to check whether, from an operational point of view, one of the two approaches is more effective than the other one in terms of virtual-future performances. We disclosed that, on the basis of the results we obtained, the winner is the probabilistic approach. More... »

PAGES

1-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-019-00234-1

DOI

http://dx.doi.org/10.1007/s10203-019-00234-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504507


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ca Foscari University of Venice", 
          "id": "https://www.grid.ac/institutes/grid.7240.1", 
          "name": [
            "Department of Economics, Ca\u2019 Foscari University of Venice, Sestiere di Cannaregio 873, 30121, Venezia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corazza", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bergamo", 
          "id": "https://www.grid.ac/institutes/grid.33236.37", 
          "name": [
            "Department of Management, Economics and Quantitative Methods, University of Bergamo, Via dei Caniana 2, 24127, Bergamo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nardelli", 
        "givenName": "Carla", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0165-0114(00)00043-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(01)00251-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013888456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/263240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021287537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2013.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90028-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026232772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2013.784820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043653379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(99)00026-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043905530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2008.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2006.12.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049291740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2329621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069891758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/cis.v3n4p116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072944022"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-02", 
    "datePublishedReg": "2019-03-02", 
    "description": "In this paper, we compare the mean\u2013variance portfolio modeling based on the possibilistic representation of the future stock returns to the one based on the classical probabilistic modelization of the same returns. There exist several different definitions of possibilistic mean, possibilistic variance and possibilistic covariance. In this paper, we consider definitions recently proposed in the literature for modeling portfolio selection problems: the possibilistic mean and variance \u00e0 la Carlsson\u2013Full\u00e9r\u2013Majlender, the lower possibilistic mean and variance, and the upper possibilistic mean and variance. In particular, we mean to answer to the following research questions: first, to check whether, from a methodological and theoretical standpoint, it is possible to detect elements of superiority of one of the two approaches with respect to the other one; then, to check whether, from an operational point of view, one of the two approaches is more effective than the other one in terms of virtual-future performances. We disclosed that, on the basis of the results we obtained, the winner is the probabilistic approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10203-019-00234-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "type": "Periodical"
      }
    ], 
    "name": "Possibilistic mean\u2013variance portfolios versus probabilistic ones: the winner is...", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e806f2c378c1b6320955a0921a0a7884fb7c66bfc1a175a93317498d279a5ef"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-019-00234-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504507"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-019-00234-1", 
      "https://app.dimensions.ai/details/publication/pub.1112504507"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10203-019-00234-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00234-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00234-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00234-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00234-1'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      35 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-019-00234-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N69cd112883284a2aa025a7f242b2d88e
4 schema:citation https://doi.org/10.1016/0165-0114(87)90028-5
5 https://doi.org/10.1016/j.amc.2006.12.080
6 https://doi.org/10.1016/j.ejor.2008.07.011
7 https://doi.org/10.1016/j.insmatheco.2013.09.005
8 https://doi.org/10.1016/s0165-0114(00)00043-9
9 https://doi.org/10.1016/s0165-0114(01)00251-2
10 https://doi.org/10.1016/s0165-0114(99)00026-3
11 https://doi.org/10.1080/00207721.2013.784820
12 https://doi.org/10.1155/2011/263240
13 https://doi.org/10.2307/2329621
14 https://doi.org/10.5539/cis.v3n4p116
15 schema:datePublished 2019-03-02
16 schema:datePublishedReg 2019-03-02
17 schema:description In this paper, we compare the mean–variance portfolio modeling based on the possibilistic representation of the future stock returns to the one based on the classical probabilistic modelization of the same returns. There exist several different definitions of possibilistic mean, possibilistic variance and possibilistic covariance. In this paper, we consider definitions recently proposed in the literature for modeling portfolio selection problems: the possibilistic mean and variance à la Carlsson–Fullér–Majlender, the lower possibilistic mean and variance, and the upper possibilistic mean and variance. In particular, we mean to answer to the following research questions: first, to check whether, from a methodological and theoretical standpoint, it is possible to detect elements of superiority of one of the two approaches with respect to the other one; then, to check whether, from an operational point of view, one of the two approaches is more effective than the other one in terms of virtual-future performances. We disclosed that, on the basis of the results we obtained, the winner is the probabilistic approach.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf sg:journal.1313765
22 schema:name Possibilistic mean–variance portfolios versus probabilistic ones: the winner is...
23 schema:pagination 1-25
24 schema:productId N7f0a5cd79ac0475da09841aa0e9b4c5e
25 N819b822f79164205a5e95d52e33b8eba
26 N8a26b812e4cb48b49c3e302a09ecd9e8
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504507
28 https://doi.org/10.1007/s10203-019-00234-1
29 schema:sdDatePublished 2019-04-11T10:50
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N2693d124e93f4265904f9ca0a029e6df
32 schema:url https://link.springer.com/10.1007%2Fs10203-019-00234-1
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N18addc1a0e7749f38c3463e5f62f492e schema:affiliation https://www.grid.ac/institutes/grid.7240.1
37 schema:familyName Corazza
38 schema:givenName Marco
39 rdf:type schema:Person
40 N2693d124e93f4265904f9ca0a029e6df schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N3fa1ca4abfbd411e8412fc08f2214400 schema:affiliation https://www.grid.ac/institutes/grid.33236.37
43 schema:familyName Nardelli
44 schema:givenName Carla
45 rdf:type schema:Person
46 N69cd112883284a2aa025a7f242b2d88e rdf:first N18addc1a0e7749f38c3463e5f62f492e
47 rdf:rest Nc8a0d967ea104521b3c6c2e36b7666e9
48 N7f0a5cd79ac0475da09841aa0e9b4c5e schema:name dimensions_id
49 schema:value pub.1112504507
50 rdf:type schema:PropertyValue
51 N819b822f79164205a5e95d52e33b8eba schema:name readcube_id
52 schema:value 5e806f2c378c1b6320955a0921a0a7884fb7c66bfc1a175a93317498d279a5ef
53 rdf:type schema:PropertyValue
54 N8a26b812e4cb48b49c3e302a09ecd9e8 schema:name doi
55 schema:value 10.1007/s10203-019-00234-1
56 rdf:type schema:PropertyValue
57 Nc8a0d967ea104521b3c6c2e36b7666e9 rdf:first N3fa1ca4abfbd411e8412fc08f2214400
58 rdf:rest rdf:nil
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
65 sg:journal.1313765 schema:issn 1129-6569
66 1593-8883
67 schema:name Decisions in Economics and Finance
68 rdf:type schema:Periodical
69 https://doi.org/10.1016/0165-0114(87)90028-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026232772
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/j.amc.2006.12.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049291740
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.ejor.2008.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523812
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.insmatheco.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025341892
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/s0165-0114(00)00043-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008871417
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/s0165-0114(01)00251-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013888456
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0165-0114(99)00026-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043905530
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/00207721.2013.784820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043653379
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1155/2011/263240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021287537
86 rdf:type schema:CreativeWork
87 https://doi.org/10.2307/2329621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069891758
88 rdf:type schema:CreativeWork
89 https://doi.org/10.5539/cis.v3n4p116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072944022
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.33236.37 schema:alternateName University of Bergamo
92 schema:name Department of Management, Economics and Quantitative Methods, University of Bergamo, Via dei Caniana 2, 24127, Bergamo, Italy
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.7240.1 schema:alternateName Ca Foscari University of Venice
95 schema:name Department of Economics, Ca’ Foscari University of Venice, Sestiere di Cannaregio 873, 30121, Venezia, Italy
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...