Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-24

AUTHORS

Julien Hok, Shih-Hau Tan

ABSTRACT

Long-maturity options or a wide class of hybrid products are evaluated using a local volatility-type modelling for the asset price S(t) with a stochastic interest rate r(t). The calibration of the local volatility function is challenging and time-consuming because of the multi-dimensional nature of the problem. A key requirement of any equity hybrid derivatives pricing model is the ability to rapidly and accurately calibrate to vanilla option prices. In this paper, we develop a calibration technique based on a partial differential equation (PDE) approach which allows an accurate calibration and provides an efficient implementation algorithm. The essential idea is based on solving the derived forward equation satisfied by P(t,S,r)Z(t,S,r), where P(t, S, r) represents the risk-neutral probability density of (S(t), r(t)) and Z(t,S,r) the projection of the stochastic discounting factor in the state variables (S(t), r(t)). The solution provides effective and sufficient information for the calibration and pricing. The PDE solver is constructed by using ADI (alternative direction implicit) method based on an extension of the Peaceman–Rachford scheme. Furthermore, an efficient algorithm to compute all the corrective terms in the local volatility function due to the stochastic interest rates is proposed by using the PDE solutions and grid points. It reduces by one order the computations costs and then allows to speed up significantly the calibration procedure. Different numerical experiments are examined and compared to demonstrate the results of our theoretical analysis. More... »

PAGES

1-29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-019-00232-3

DOI

http://dx.doi.org/10.1007/s10203-019-00232-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111648606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Cr\u00e9dit Agricole CIB, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hok", 
        "givenName": "Julien", 
        "id": "sg:person.013144271661.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144271661.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cuemacro, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Shih-Hau", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-34604-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000307163", 
          "https://doi.org/10.1007/978-3-540-34604-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1000307163", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001580100", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12616-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001580100", 
          "https://doi.org/10.1007/978-3-662-12616-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12616-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001580100", 
          "https://doi.org/10.1007/978-3-662-12616-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1350486042000297225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001844321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2010.523011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002359856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14394-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003306943", 
          "https://doi.org/10.1007/978-3-642-14394-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14394-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003306943", 
          "https://doi.org/10.1007/978-3-642-14394-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/135048600450275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004715009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21617-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016605501", 
          "https://doi.org/10.1007/978-0-387-21617-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21617-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016605501", 
          "https://doi.org/10.1007/978-0-387-21617-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2015.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021406821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1350486x.2012.723516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023525020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-009-0102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024718559", 
          "https://doi.org/10.1007/s00780-009-0102-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-009-0102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024718559", 
          "https://doi.org/10.1007/s00780-009-0102-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-009-0102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024718559", 
          "https://doi.org/10.1007/s00780-009-0102-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021155301176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036165985", 
          "https://doi.org/10.1023/a:1021155301176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/proc/201445009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045612380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1994.tb00079.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048409282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0103003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219024914500101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062986526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219024998000059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062986686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jcf.2004.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068976621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2331288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069893150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3905/jod.2015.22.3.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071560184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocs.2017.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083875446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1350486x.2017.1409641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099633239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219024918500176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101754958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1079627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102243762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1502302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102275157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2780072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102461486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-24", 
    "datePublishedReg": "2019-01-24", 
    "description": "Long-maturity options or a wide class of hybrid products are evaluated using a local volatility-type modelling for the asset price S(t) with a stochastic interest rate r(t). The calibration of the local volatility function is challenging and time-consuming because of the multi-dimensional nature of the problem. A key requirement of any equity hybrid derivatives pricing model is the ability to rapidly and accurately calibrate to vanilla option prices. In this paper, we develop a calibration technique based on a partial differential equation (PDE) approach which allows an accurate calibration and provides an efficient implementation algorithm. The essential idea is based on solving the derived forward equation satisfied by P(t,S,r)Z(t,S,r), where P(t, S, r) represents the risk-neutral probability density of (S(t), r(t)) and Z(t,S,r) the projection of the stochastic discounting factor in the state variables (S(t), r(t)). The solution provides effective and sufficient information for the calibration and pricing. The PDE solver is constructed by using ADI (alternative direction implicit) method based on an extension of the Peaceman\u2013Rachford scheme. Furthermore, an efficient algorithm to compute all the corrective terms in the local volatility function due to the stochastic interest rates is proposed by using the PDE solutions and grid points. It reduces by one order the computations costs and then allows to speed up significantly the calibration procedure. Different numerical experiments are examined and compared to demonstrate the results of our theoretical analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10203-019-00232-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "type": "Periodical"
      }
    ], 
    "name": "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b64cb1b5cc02cdc3a41e793ec63ce2bb753b52869adcffa36a82252b85e2a716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-019-00232-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111648606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-019-00232-3", 
      "https://app.dimensions.ai/details/publication/pub.1111648606"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10203-019-00232-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00232-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00232-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00232-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-019-00232-3'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-019-00232-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne1683fa54a0c483cbdef6e8afcc14562
4 schema:citation sg:pub.10.1007/978-0-387-21617-1
5 sg:pub.10.1007/978-3-540-34604-3
6 sg:pub.10.1007/978-3-642-14394-6
7 sg:pub.10.1007/978-3-662-12616-5
8 sg:pub.10.1007/s00780-009-0102-3
9 sg:pub.10.1023/a:1021155301176
10 https://app.dimensions.ai/details/publication/pub.1000307163
11 https://app.dimensions.ai/details/publication/pub.1001580100
12 https://doi.org/10.1016/j.cam.2015.09.023
13 https://doi.org/10.1016/j.jocs.2017.02.004
14 https://doi.org/10.1051/proc/201445009
15 https://doi.org/10.1080/135048600450275
16 https://doi.org/10.1080/1350486042000297225
17 https://doi.org/10.1080/1350486x.2012.723516
18 https://doi.org/10.1080/1350486x.2017.1409641
19 https://doi.org/10.1080/14697688.2010.523011
20 https://doi.org/10.1111/j.1540-6261.1994.tb00079.x
21 https://doi.org/10.1137/0103003
22 https://doi.org/10.1142/s0219024914500101
23 https://doi.org/10.1142/s0219024918500176
24 https://doi.org/10.1142/s0219024998000059
25 https://doi.org/10.21314/jcf.2004.116
26 https://doi.org/10.2139/ssrn.1079627
27 https://doi.org/10.2139/ssrn.1502302
28 https://doi.org/10.2139/ssrn.2780072
29 https://doi.org/10.2307/2331288
30 https://doi.org/10.3905/jod.2015.22.3.021
31 schema:datePublished 2019-01-24
32 schema:datePublishedReg 2019-01-24
33 schema:description Long-maturity options or a wide class of hybrid products are evaluated using a local volatility-type modelling for the asset price S(t) with a stochastic interest rate r(t). The calibration of the local volatility function is challenging and time-consuming because of the multi-dimensional nature of the problem. A key requirement of any equity hybrid derivatives pricing model is the ability to rapidly and accurately calibrate to vanilla option prices. In this paper, we develop a calibration technique based on a partial differential equation (PDE) approach which allows an accurate calibration and provides an efficient implementation algorithm. The essential idea is based on solving the derived forward equation satisfied by P(t,S,r)Z(t,S,r), where P(t, S, r) represents the risk-neutral probability density of (S(t), r(t)) and Z(t,S,r) the projection of the stochastic discounting factor in the state variables (S(t), r(t)). The solution provides effective and sufficient information for the calibration and pricing. The PDE solver is constructed by using ADI (alternative direction implicit) method based on an extension of the Peaceman–Rachford scheme. Furthermore, an efficient algorithm to compute all the corrective terms in the local volatility function due to the stochastic interest rates is proposed by using the PDE solutions and grid points. It reduces by one order the computations costs and then allows to speed up significantly the calibration procedure. Different numerical experiments are examined and compared to demonstrate the results of our theoretical analysis.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1313765
38 schema:name Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods
39 schema:pagination 1-29
40 schema:productId Nba1972f37a224009ac730175d6969d59
41 Nf1a043b011dc4e4abac3ce13062630bd
42 Nfb0f6bf86db94543a7d245774ed03941
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111648606
44 https://doi.org/10.1007/s10203-019-00232-3
45 schema:sdDatePublished 2019-04-11T08:55
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N47fbefd70c7f41529560ace91a1929be
48 schema:url https://link.springer.com/10.1007%2Fs10203-019-00232-3
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N27c92e539c334991921b7c49a0597a53 rdf:first N637813e0c0974c3d93b4b27da34824da
53 rdf:rest rdf:nil
54 N47fbefd70c7f41529560ace91a1929be schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N637813e0c0974c3d93b4b27da34824da schema:affiliation N7793a001e0e8421ab345611f14d18cdf
57 schema:familyName Tan
58 schema:givenName Shih-Hau
59 rdf:type schema:Person
60 N6b58b4727e63406fb001640ede882342 schema:name Crédit Agricole CIB, London, UK
61 rdf:type schema:Organization
62 N7793a001e0e8421ab345611f14d18cdf schema:name Cuemacro, London, UK
63 rdf:type schema:Organization
64 Nba1972f37a224009ac730175d6969d59 schema:name readcube_id
65 schema:value b64cb1b5cc02cdc3a41e793ec63ce2bb753b52869adcffa36a82252b85e2a716
66 rdf:type schema:PropertyValue
67 Ne1683fa54a0c483cbdef6e8afcc14562 rdf:first sg:person.013144271661.84
68 rdf:rest N27c92e539c334991921b7c49a0597a53
69 Nf1a043b011dc4e4abac3ce13062630bd schema:name doi
70 schema:value 10.1007/s10203-019-00232-3
71 rdf:type schema:PropertyValue
72 Nfb0f6bf86db94543a7d245774ed03941 schema:name dimensions_id
73 schema:value pub.1111648606
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:journal.1313765 schema:issn 1129-6569
82 1593-8883
83 schema:name Decisions in Economics and Finance
84 rdf:type schema:Periodical
85 sg:person.013144271661.84 schema:affiliation N6b58b4727e63406fb001640ede882342
86 schema:familyName Hok
87 schema:givenName Julien
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144271661.84
89 rdf:type schema:Person
90 sg:pub.10.1007/978-0-387-21617-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016605501
91 https://doi.org/10.1007/978-0-387-21617-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-540-34604-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000307163
94 https://doi.org/10.1007/978-3-540-34604-3
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-14394-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003306943
97 https://doi.org/10.1007/978-3-642-14394-6
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-662-12616-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580100
100 https://doi.org/10.1007/978-3-662-12616-5
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00780-009-0102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024718559
103 https://doi.org/10.1007/s00780-009-0102-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1021155301176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036165985
106 https://doi.org/10.1023/a:1021155301176
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1000307163 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1001580100 schema:CreativeWork
110 https://doi.org/10.1016/j.cam.2015.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021406821
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jocs.2017.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083875446
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1051/proc/201445009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045612380
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/135048600450275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004715009
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/1350486042000297225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001844321
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/1350486x.2012.723516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023525020
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/1350486x.2017.1409641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099633239
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/14697688.2010.523011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002359856
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/j.1540-6261.1994.tb00079.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048409282
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/0103003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837572
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1142/s0219024914500101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062986526
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1142/s0219024918500176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101754958
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1142/s0219024998000059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062986686
135 rdf:type schema:CreativeWork
136 https://doi.org/10.21314/jcf.2004.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068976621
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2139/ssrn.1079627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102243762
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2139/ssrn.1502302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102275157
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2139/ssrn.2780072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102461486
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2307/2331288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069893150
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3905/jod.2015.22.3.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071560184
147 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...