An evolutionary model with best response and imitative rules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Lorenzo Cerboni Baiardi, Ahmad K. Naimzada

ABSTRACT

We formulate an evolutionary oligopoly model where quantity setting players produce following either the static expectation best response or a performance-proportional imitation rule. The choice on how to behave is driven by an evolutionary selection mechanism according to which the rule that brought the highest performance attracts more followers. The model has a stationary state that represents a heterogeneous population where rational and imitative rules coexist and where players produce at the Cournot–Nash level. We find that the intensity of choice, a parameter representing the evolutionary propensity to switch to the most profitable rule, the cost of the best response implementation as well as the number of players have ambiguous roles in determining the stability property of the Cournot–Nash equilibrium. This marks important differences with most of the results from evolutionary models and oligopoly competitions. Such differences should be referred to the particular imitative behavior we consider in the present modeling setup. Moreover, the global analysis of the model reveals that the above-mentioned parameters introduce further elements of complexity, conditioning the convergence toward an inner attractor. In particular, even when the Cournot–Nash equilibrium loses its stability, outputs of players little differ from the Cournot–Nash level and most of the dynamics is due to wide variations of imitators’ relative fraction. This describes dynamic scenarios where shares of players produce more or less at the same level alternating their decision mechanisms. More... »

PAGES

1-21

Journal

TITLE

Decisions in Economics and Finance

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-018-0219-y

DOI

http://dx.doi.org/10.1007/s10203-018-0219-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109788873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milano-Bicocca", 
          "id": "https://www.grid.ac/institutes/grid.7563.7", 
          "name": [
            "Department of Economics, Quantitative Methods and Management, University of Milano - Bicocca, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cerboni Baiardi", 
        "givenName": "Lorenzo", 
        "id": "sg:person.0740677757.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740677757.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milano-Bicocca", 
          "id": "https://www.grid.ac/institutes/grid.7563.7", 
          "name": [
            "Department of Economics, Quantitative Methods and Management, University of Milano - Bicocca, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naimzada", 
        "givenName": "Ahmad K.", 
        "id": "sg:person.012572427335.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572427335.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matcom.2009.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001513975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139903", 
          "https://doi.org/10.1007/s11071-015-2044-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jebo.2002.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005518127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005743053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0096-3003(03)00190-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009493109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0096-3003(03)00190-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009493109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40881-015-0019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013053937", 
          "https://doi.org/10.1007/s40881-015-0019-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018931824853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013077209", 
          "https://doi.org/10.1023/a:1018931824853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jet.2006.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013536910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2015.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014362757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2009.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015737662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-03-00988-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017737341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2013.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018101207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10236198.2015.1040403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022012691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2016.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024448273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025961672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1889(00)00038-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027492119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jebo.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028815689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2009.03.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029339357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2015.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030296540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2010.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033086600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1336-9_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033275957", 
          "https://doi.org/10.1007/978-1-4612-1336-9_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1336-9_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033275957", 
          "https://doi.org/10.1007/978-1-4612-1336-9_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2014.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034760408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2013.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034939805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2014.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035679202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018919522127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036351134", 
          "https://doi.org/10.1023/a:1018919522127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-8256(02)00001-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036910433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(01)00347-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041075071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/273026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041588523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0362-546x(01)00637-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043015291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2013.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043396448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jebo.2015.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047696550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(02)01648-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050470339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(02)01648-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050470339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050851280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2005.08.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051233501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2015.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053459924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-937x.00233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061835183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219198904000289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062990468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2171879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069804401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2171898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069804416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2296135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069867768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2017.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085725617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00191-017-0536-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091607491", 
          "https://doi.org/10.1007/s00191-017-0536-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139094276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5024245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104018995"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "We formulate an evolutionary oligopoly model where quantity setting players produce following either the static expectation best response or a performance-proportional imitation rule. The choice on how to behave is driven by an evolutionary selection mechanism according to which the rule that brought the highest performance attracts more followers. The model has a stationary state that represents a heterogeneous population where rational and imitative rules coexist and where players produce at the Cournot\u2013Nash level. We find that the intensity of choice, a parameter representing the evolutionary propensity to switch to the most profitable rule, the cost of the best response implementation as well as the number of players have ambiguous roles in determining the stability property of the Cournot\u2013Nash equilibrium. This marks important differences with most of the results from evolutionary models and oligopoly competitions. Such differences should be referred to the particular imitative behavior we consider in the present modeling setup. Moreover, the global analysis of the model reveals that the above-mentioned parameters introduce further elements of complexity, conditioning the convergence toward an inner attractor. In particular, even when the Cournot\u2013Nash equilibrium loses its stability, outputs of players little differ from the Cournot\u2013Nash level and most of the dynamics is due to wide variations of imitators\u2019 relative fraction. This describes dynamic scenarios where shares of players produce more or less at the same level alternating their decision mechanisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10203-018-0219-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "type": "Periodical"
      }
    ], 
    "name": "An evolutionary model with best response and imitative rules", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "232ddb9bcffb0bfe37ecc614694dbf048b0a2d7853994fbaf92da4721da373d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-018-0219-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109788873"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-018-0219-y", 
      "https://app.dimensions.ai/details/publication/pub.1109788873"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10203-018-0219-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-018-0219-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-018-0219-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-018-0219-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-018-0219-y'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      69 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-018-0219-y schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Ne66ebb99b1d6491fa1cdee051e6705a4
4 schema:citation sg:pub.10.1007/978-1-4612-1336-9_20
5 sg:pub.10.1007/s00191-017-0536-2
6 sg:pub.10.1007/s11071-015-2044-y
7 sg:pub.10.1007/s40881-015-0019-x
8 sg:pub.10.1023/a:1018919522127
9 sg:pub.10.1023/a:1018931824853
10 https://doi.org/10.1016/j.amc.2014.10.031
11 https://doi.org/10.1016/j.chaos.2005.08.103
12 https://doi.org/10.1016/j.chaos.2009.03.109
13 https://doi.org/10.1016/j.chaos.2015.07.011
14 https://doi.org/10.1016/j.cnsns.2013.10.012
15 https://doi.org/10.1016/j.cnsns.2014.11.013
16 https://doi.org/10.1016/j.cnsns.2017.05.010
17 https://doi.org/10.1016/j.econmod.2009.09.014
18 https://doi.org/10.1016/j.econmod.2010.08.020
19 https://doi.org/10.1016/j.geb.2013.05.006
20 https://doi.org/10.1016/j.jebo.2002.10.002
21 https://doi.org/10.1016/j.jebo.2005.08.006
22 https://doi.org/10.1016/j.jebo.2015.04.024
23 https://doi.org/10.1016/j.jedc.2014.06.001
24 https://doi.org/10.1016/j.jet.2006.07.006
25 https://doi.org/10.1016/j.matcom.2009.04.001
26 https://doi.org/10.1016/j.matcom.2013.09.004
27 https://doi.org/10.1016/j.matcom.2015.02.005
28 https://doi.org/10.1016/j.matcom.2016.07.001
29 https://doi.org/10.1016/j.nonrwa.2015.03.003
30 https://doi.org/10.1016/j.nonrwa.2015.05.005
31 https://doi.org/10.1016/j.orl.2013.12.006
32 https://doi.org/10.1016/s0096-3003(03)00190-5
33 https://doi.org/10.1016/s0165-1889(00)00038-5
34 https://doi.org/10.1016/s0362-546x(01)00637-x
35 https://doi.org/10.1016/s0378-4371(02)01648-5
36 https://doi.org/10.1016/s0378-4754(01)00347-0
37 https://doi.org/10.1016/s0899-8256(02)00001-5
38 https://doi.org/10.1017/cbo9781139094276
39 https://doi.org/10.1063/1.5024245
40 https://doi.org/10.1080/10236198.2015.1040403
41 https://doi.org/10.1090/s0273-0979-03-00988-1
42 https://doi.org/10.1111/1467-937x.00233
43 https://doi.org/10.1142/s0219198904000289
44 https://doi.org/10.1155/2015/273026
45 https://doi.org/10.2307/2171879
46 https://doi.org/10.2307/2171898
47 https://doi.org/10.2307/2296135
48 schema:datePublished 2018-11
49 schema:datePublishedReg 2018-11-01
50 schema:description We formulate an evolutionary oligopoly model where quantity setting players produce following either the static expectation best response or a performance-proportional imitation rule. The choice on how to behave is driven by an evolutionary selection mechanism according to which the rule that brought the highest performance attracts more followers. The model has a stationary state that represents a heterogeneous population where rational and imitative rules coexist and where players produce at the Cournot–Nash level. We find that the intensity of choice, a parameter representing the evolutionary propensity to switch to the most profitable rule, the cost of the best response implementation as well as the number of players have ambiguous roles in determining the stability property of the Cournot–Nash equilibrium. This marks important differences with most of the results from evolutionary models and oligopoly competitions. Such differences should be referred to the particular imitative behavior we consider in the present modeling setup. Moreover, the global analysis of the model reveals that the above-mentioned parameters introduce further elements of complexity, conditioning the convergence toward an inner attractor. In particular, even when the Cournot–Nash equilibrium loses its stability, outputs of players little differ from the Cournot–Nash level and most of the dynamics is due to wide variations of imitators’ relative fraction. This describes dynamic scenarios where shares of players produce more or less at the same level alternating their decision mechanisms.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf sg:journal.1313765
55 schema:name An evolutionary model with best response and imitative rules
56 schema:pagination 1-21
57 schema:productId N022137f69ac3422aafbf95f77b9bac9f
58 N2c62896c1d31400f85ca720a97d697b5
59 Nced4f8857bf940ae898ee2cccec7c28d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109788873
61 https://doi.org/10.1007/s10203-018-0219-y
62 schema:sdDatePublished 2019-04-10T19:22
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N7c5fbea16e3647c0a930137c597a1427
65 schema:url https://link.springer.com/10.1007%2Fs10203-018-0219-y
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N022137f69ac3422aafbf95f77b9bac9f schema:name doi
70 schema:value 10.1007/s10203-018-0219-y
71 rdf:type schema:PropertyValue
72 N2c62896c1d31400f85ca720a97d697b5 schema:name dimensions_id
73 schema:value pub.1109788873
74 rdf:type schema:PropertyValue
75 N3618cfcb236548eea76a76b0844a6e39 rdf:first sg:person.012572427335.10
76 rdf:rest rdf:nil
77 N7c5fbea16e3647c0a930137c597a1427 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nced4f8857bf940ae898ee2cccec7c28d schema:name readcube_id
80 schema:value 232ddb9bcffb0bfe37ecc614694dbf048b0a2d7853994fbaf92da4721da373d1
81 rdf:type schema:PropertyValue
82 Ne66ebb99b1d6491fa1cdee051e6705a4 rdf:first sg:person.0740677757.13
83 rdf:rest N3618cfcb236548eea76a76b0844a6e39
84 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
85 schema:name Economics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
88 schema:name Applied Economics
89 rdf:type schema:DefinedTerm
90 sg:journal.1313765 schema:issn 1129-6569
91 1593-8883
92 schema:name Decisions in Economics and Finance
93 rdf:type schema:Periodical
94 sg:person.012572427335.10 schema:affiliation https://www.grid.ac/institutes/grid.7563.7
95 schema:familyName Naimzada
96 schema:givenName Ahmad K.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572427335.10
98 rdf:type schema:Person
99 sg:person.0740677757.13 schema:affiliation https://www.grid.ac/institutes/grid.7563.7
100 schema:familyName Cerboni Baiardi
101 schema:givenName Lorenzo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740677757.13
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4612-1336-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033275957
105 https://doi.org/10.1007/978-1-4612-1336-9_20
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00191-017-0536-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091607491
108 https://doi.org/10.1007/s00191-017-0536-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11071-015-2044-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139903
111 https://doi.org/10.1007/s11071-015-2044-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40881-015-0019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013053937
114 https://doi.org/10.1007/s40881-015-0019-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1018919522127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036351134
117 https://doi.org/10.1023/a:1018919522127
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1018931824853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013077209
120 https://doi.org/10.1023/a:1018931824853
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.amc.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005743053
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.chaos.2005.08.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051233501
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.chaos.2009.03.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029339357
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.chaos.2015.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053459924
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cnsns.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034939805
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cnsns.2014.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760408
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cnsns.2017.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085725617
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.econmod.2009.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015737662
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.econmod.2010.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033086600
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.geb.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043396448
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jebo.2002.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005518127
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jebo.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028815689
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jebo.2015.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047696550
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jedc.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035679202
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jet.2006.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013536910
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.matcom.2009.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001513975
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.matcom.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050851280
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.matcom.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025961672
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.matcom.2016.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024448273
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nonrwa.2015.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014362757
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.nonrwa.2015.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030296540
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.orl.2013.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018101207
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0096-3003(03)00190-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009493109
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0165-1889(00)00038-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027492119
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0362-546x(01)00637-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043015291
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0378-4371(02)01648-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050470339
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0378-4754(01)00347-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041075071
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0899-8256(02)00001-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036910433
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1017/cbo9781139094276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667257
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.5024245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104018995
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/10236198.2015.1040403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022012691
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1090/s0273-0979-03-00988-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017737341
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/1467-937x.00233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061835183
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1142/s0219198904000289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062990468
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1155/2015/273026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041588523
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2307/2171879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069804401
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2307/2171898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069804416
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2307/2296135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069867768
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.7563.7 schema:alternateName University of Milano-Bicocca
199 schema:name Department of Economics, Quantitative Methods and Management, University of Milano - Bicocca, Milano, Italy
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...