Pseudoconvexity on a closed convex set: an application to a wide class of generalized fractional functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-11

AUTHORS

Laura Carosi

ABSTRACT

The issue of the pseudoconvexity of a function on a closed set is addressed. It is proved that if a function has no critical points on the boundary of a convex set, then the pseudoconvexity on the interior guarantees the pseudoconvexity on the closure of the set. This result holds even when the boundary of the set contains line segments, and it is used to characterize the pseudoconvexity, on the nonnegative orthant, of a wide class of generalized fractional functions, namely the sum between a linear one and a ratio which has an affine function as numerator and, as denominator, the p-th power of an affine function. The relationship between quasiconvexity and pseudoconvexity is also investigated. More... »

PAGES

145-158

References to SciGraph publications

  • 2007-12-18. A sequential method for a class of pseudoconcave fractional problems in CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH
  • 1978-12. Second order characterizations of pseudoconvex functions in MATHEMATICAL PROGRAMMING
  • 1982-12. Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons in MATHEMATICAL PROGRAMMING
  • 1988. Generalized Concavity in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10203-017-0185-9

    DOI

    http://dx.doi.org/10.1007/s10203-017-0185-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083765761


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Economics and Management, University of Pisa, Pisa, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5395.a", 
              "name": [
                "Department of Economics and Management, University of Pisa, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carosi", 
            "givenName": "Laura", 
            "id": "sg:person.011733153760.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011733153760.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01583788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003810586", 
              "https://doi.org/10.1007/bf01583788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01588964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023186778", 
              "https://doi.org/10.1007/bf01588964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10100-007-0050-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031476771", 
              "https://doi.org/10.1007/s10100-007-0050-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-7600-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705622", 
              "https://doi.org/10.1007/978-1-4684-7600-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-11", 
        "datePublishedReg": "2017-02-11", 
        "description": "The issue of the pseudoconvexity of a function on a closed set is addressed. It is proved that if a function has no critical points on the boundary of a convex set, then the pseudoconvexity on the interior guarantees the pseudoconvexity on the closure of the set. This result holds even when the boundary of the set contains line segments, and it is used to characterize the pseudoconvexity, on the nonnegative orthant, of a wide class of generalized fractional functions, namely the sum between a linear one and a ratio which has an affine function as numerator and, as denominator, the p-th power of an affine function. The relationship between quasiconvexity and pseudoconvexity is also investigated.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10203-017-0185-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313765", 
            "issn": [
              "1593-8883", 
              "1129-6569"
            ], 
            "name": "Decisions in Economics and Finance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "wide class", 
          "convex sets", 
          "affine functions", 
          "fractional functions", 
          "nonnegative orthant", 
          "closed set", 
          "pseudoconvexity", 
          "critical point", 
          "line segments", 
          "orthant", 
          "set", 
          "quasiconvexity", 
          "class", 
          "function", 
          "boundaries", 
          "numerator", 
          "sum", 
          "point", 
          "applications", 
          "denominator", 
          "power", 
          "results", 
          "ratio", 
          "issues", 
          "closure", 
          "segments", 
          "relationship"
        ], 
        "name": "Pseudoconvexity on a closed convex set: an application to a wide class of generalized fractional functions", 
        "pagination": "145-158", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083765761"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10203-017-0185-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10203-017-0185-9", 
          "https://app.dimensions.ai/details/publication/pub.1083765761"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10203-017-0185-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-017-0185-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-017-0185-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-017-0185-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-017-0185-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      55 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10203-017-0185-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N63d37a443acf424799c8c75708c38fcb
    4 schema:citation sg:pub.10.1007/978-1-4684-7600-2
    5 sg:pub.10.1007/bf01583788
    6 sg:pub.10.1007/bf01588964
    7 sg:pub.10.1007/s10100-007-0050-y
    8 schema:datePublished 2017-02-11
    9 schema:datePublishedReg 2017-02-11
    10 schema:description The issue of the pseudoconvexity of a function on a closed set is addressed. It is proved that if a function has no critical points on the boundary of a convex set, then the pseudoconvexity on the interior guarantees the pseudoconvexity on the closure of the set. This result holds even when the boundary of the set contains line segments, and it is used to characterize the pseudoconvexity, on the nonnegative orthant, of a wide class of generalized fractional functions, namely the sum between a linear one and a ratio which has an affine function as numerator and, as denominator, the p-th power of an affine function. The relationship between quasiconvexity and pseudoconvexity is also investigated.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N5887cd7a658a44c7b816ad6b5f695826
    14 Ne1f838e073674000bcb67748da9a80f5
    15 sg:journal.1313765
    16 schema:keywords affine functions
    17 applications
    18 boundaries
    19 class
    20 closed set
    21 closure
    22 convex sets
    23 critical point
    24 denominator
    25 fractional functions
    26 function
    27 issues
    28 line segments
    29 nonnegative orthant
    30 numerator
    31 orthant
    32 point
    33 power
    34 pseudoconvexity
    35 quasiconvexity
    36 ratio
    37 relationship
    38 results
    39 segments
    40 set
    41 sum
    42 wide class
    43 schema:name Pseudoconvexity on a closed convex set: an application to a wide class of generalized fractional functions
    44 schema:pagination 145-158
    45 schema:productId N5001a8b3a25841e1b0c8af1d4c3acb90
    46 N64e4fd9cad224a1695eb658701331e7a
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083765761
    48 https://doi.org/10.1007/s10203-017-0185-9
    49 schema:sdDatePublished 2022-12-01T06:36
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5fd49cb2ad494ce2a0c3c352ae3e314b
    52 schema:url https://doi.org/10.1007/s10203-017-0185-9
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N5001a8b3a25841e1b0c8af1d4c3acb90 schema:name dimensions_id
    57 schema:value pub.1083765761
    58 rdf:type schema:PropertyValue
    59 N5887cd7a658a44c7b816ad6b5f695826 schema:volumeNumber 40
    60 rdf:type schema:PublicationVolume
    61 N5fd49cb2ad494ce2a0c3c352ae3e314b schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N63d37a443acf424799c8c75708c38fcb rdf:first sg:person.011733153760.34
    64 rdf:rest rdf:nil
    65 N64e4fd9cad224a1695eb658701331e7a schema:name doi
    66 schema:value 10.1007/s10203-017-0185-9
    67 rdf:type schema:PropertyValue
    68 Ne1f838e073674000bcb67748da9a80f5 schema:issueNumber 1-2
    69 rdf:type schema:PublicationIssue
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Pure Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1313765 schema:issn 1129-6569
    77 1593-8883
    78 schema:name Decisions in Economics and Finance
    79 schema:publisher Springer Nature
    80 rdf:type schema:Periodical
    81 sg:person.011733153760.34 schema:affiliation grid-institutes:grid.5395.a
    82 schema:familyName Carosi
    83 schema:givenName Laura
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011733153760.34
    85 rdf:type schema:Person
    86 sg:pub.10.1007/978-1-4684-7600-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705622
    87 https://doi.org/10.1007/978-1-4684-7600-2
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01583788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003810586
    90 https://doi.org/10.1007/bf01583788
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01588964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023186778
    93 https://doi.org/10.1007/bf01588964
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s10100-007-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031476771
    96 https://doi.org/10.1007/s10100-007-0050-y
    97 rdf:type schema:CreativeWork
    98 grid-institutes:grid.5395.a schema:alternateName Department of Economics and Management, University of Pisa, Pisa, Italy
    99 schema:name Department of Economics and Management, University of Pisa, Pisa, Italy
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...