Markets with random lifetimes and private values: mean reversion and option to trade View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01-18

AUTHORS

Jakša Cvitanić, Charles Plott, Chien-Yao Tseng

ABSTRACT

We consider a market in which traders arrive at random times, with random private values for the single-traded asset. A trader’s optimal trading decision is formulated in terms of exercising the option to trade one unit of the asset at the optimal stopping time. We solve the optimal stopping problem under the assumption that the market price follows a mean-reverting diffusion process. The model is calibrated to experimental data taken from Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010), resulting in a very good fit. In particular, the estimated long-term mean of the traded prices is close to the theoretical long-term mean at which the expected number of buys is equal to the expected number of sells. We call that value long-term competitive equilibrium, extending the concept of flow competitive equilibrium of Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010). More... »

PAGES

1-19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10203-014-0155-4

DOI

http://dx.doi.org/10.1007/s10203-014-0155-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047568575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cvitani\u0107", 
        "givenName": "Jak\u0161a", 
        "id": "sg:person.016505501211.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505501211.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plott", 
        "givenName": "Charles", 
        "id": "sg:person.015156246113.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156246113.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tseng", 
        "givenName": "Chien-Yao", 
        "id": "sg:person.011755533326.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755533326.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-4296-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705765", 
          "https://doi.org/10.1007/978-1-4757-4296-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11579-010-0027-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005085580", 
          "https://doi.org/10.1007/s11579-010-0027-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-18", 
    "datePublishedReg": "2014-01-18", 
    "description": "We consider a market in which traders arrive at random times, with random private values for the single-traded asset. A trader\u2019s optimal trading decision is formulated in terms of exercising the option to trade one unit of the asset at the optimal stopping time. We solve the optimal stopping problem under the assumption that the market price follows a mean-reverting diffusion process. The model is calibrated to experimental data taken from Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010), resulting in a very good fit. In particular, the estimated long-term mean of the traded prices is close to the theoretical long-term mean at which the expected number of buys is equal to the expected number of sells. We call that value long-term competitive equilibrium, extending the concept of flow competitive equilibrium of Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10203-014-0155-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313765", 
        "issn": [
          "1129-6569", 
          "1593-8883"
        ], 
        "name": "Decisions in Economics and Finance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "optimal trading decisions", 
      "private values", 
      "mean-reverting diffusion process", 
      "competitive equilibrium", 
      "trading decisions", 
      "market prices", 
      "assets", 
      "market", 
      "optimal stopping problem", 
      "prices", 
      "Plott", 
      "long-term mean", 
      "traders", 
      "buy", 
      "sell", 
      "equilibrium", 
      "diffusion process", 
      "random lifetimes", 
      "decisions", 
      "random times", 
      "options", 
      "Alton", 
      "values", 
      "reversion", 
      "assumption", 
      "fit", 
      "concept", 
      "best fit", 
      "model", 
      "terms", 
      "process", 
      "data", 
      "means", 
      "problem", 
      "time", 
      "number", 
      "units", 
      "experimental data", 
      "lifetime", 
      "random private values", 
      "trader\u2019s optimal trading decision", 
      "stopping problem", 
      "theoretical long-term mean", 
      "number of buys", 
      "number of sells", 
      "value long-term competitive equilibrium", 
      "long-term competitive equilibrium", 
      "flow competitive equilibrium"
    ], 
    "name": "Markets with random lifetimes and private values: mean reversion and option to trade", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047568575"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10203-014-0155-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10203-014-0155-4", 
      "https://app.dimensions.ai/details/publication/pub.1047568575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_628.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10203-014-0155-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10203-014-0155-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10203-014-0155-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10203-014-0155-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10203-014-0155-4'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      75 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10203-014-0155-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N324af27a034d4ac2bb6788c25977a044
4 schema:citation sg:pub.10.1007/978-1-4757-4296-1
5 sg:pub.10.1007/s11579-010-0027-9
6 schema:datePublished 2014-01-18
7 schema:datePublishedReg 2014-01-18
8 schema:description We consider a market in which traders arrive at random times, with random private values for the single-traded asset. A trader’s optimal trading decision is formulated in terms of exercising the option to trade one unit of the asset at the optimal stopping time. We solve the optimal stopping problem under the assumption that the market price follows a mean-reverting diffusion process. The model is calibrated to experimental data taken from Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010), resulting in a very good fit. In particular, the estimated long-term mean of the traded prices is close to the theoretical long-term mean at which the expected number of buys is equal to the expected number of sells. We call that value long-term competitive equilibrium, extending the concept of flow competitive equilibrium of Alton and Plott (Principles of continuous price determination in an experimental environment with flows of random arrivals and departures. Working paper, Caltech, 2010).
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N852fed3d78414cf48b6f8b83b3d29718
13 Ndf1729f155224131b2cf8e73707a548f
14 sg:journal.1313765
15 schema:keywords Alton
16 Plott
17 assets
18 assumption
19 best fit
20 buy
21 competitive equilibrium
22 concept
23 data
24 decisions
25 diffusion process
26 equilibrium
27 experimental data
28 fit
29 flow competitive equilibrium
30 lifetime
31 long-term competitive equilibrium
32 long-term mean
33 market
34 market prices
35 mean-reverting diffusion process
36 means
37 model
38 number
39 number of buys
40 number of sells
41 optimal stopping problem
42 optimal trading decisions
43 options
44 prices
45 private values
46 problem
47 process
48 random lifetimes
49 random private values
50 random times
51 reversion
52 sell
53 stopping problem
54 terms
55 theoretical long-term mean
56 time
57 traders
58 trader’s optimal trading decision
59 trading decisions
60 units
61 value long-term competitive equilibrium
62 values
63 schema:name Markets with random lifetimes and private values: mean reversion and option to trade
64 schema:pagination 1-19
65 schema:productId N76dc1e68253e4a45ac82683b38fbc9b7
66 Nd082dbf83651425cb67c00c7a1fc0daf
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047568575
68 https://doi.org/10.1007/s10203-014-0155-4
69 schema:sdDatePublished 2021-12-01T19:31
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N9492361ed0ae4e038d10767cd66ac7f2
72 schema:url https://doi.org/10.1007/s10203-014-0155-4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N324af27a034d4ac2bb6788c25977a044 rdf:first sg:person.016505501211.18
77 rdf:rest Nedc8a3ac16154cb59c1a18c5e632ee97
78 N76dc1e68253e4a45ac82683b38fbc9b7 schema:name doi
79 schema:value 10.1007/s10203-014-0155-4
80 rdf:type schema:PropertyValue
81 N852fed3d78414cf48b6f8b83b3d29718 schema:volumeNumber 38
82 rdf:type schema:PublicationVolume
83 N9492361ed0ae4e038d10767cd66ac7f2 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nbaa44d55abb14159b981cfbfef554bfd rdf:first sg:person.011755533326.77
86 rdf:rest rdf:nil
87 Nd082dbf83651425cb67c00c7a1fc0daf schema:name dimensions_id
88 schema:value pub.1047568575
89 rdf:type schema:PropertyValue
90 Ndf1729f155224131b2cf8e73707a548f schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nedc8a3ac16154cb59c1a18c5e632ee97 rdf:first sg:person.015156246113.99
93 rdf:rest Nbaa44d55abb14159b981cfbfef554bfd
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1313765 schema:issn 1129-6569
101 1593-8883
102 schema:name Decisions in Economics and Finance
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.011755533326.77 schema:affiliation grid-institutes:grid.20861.3d
106 schema:familyName Tseng
107 schema:givenName Chien-Yao
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755533326.77
109 rdf:type schema:Person
110 sg:person.015156246113.99 schema:affiliation grid-institutes:grid.20861.3d
111 schema:familyName Plott
112 schema:givenName Charles
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156246113.99
114 rdf:type schema:Person
115 sg:person.016505501211.18 schema:affiliation grid-institutes:grid.20861.3d
116 schema:familyName Cvitanić
117 schema:givenName Jakša
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505501211.18
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4757-4296-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705765
121 https://doi.org/10.1007/978-1-4757-4296-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11579-010-0027-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005085580
124 https://doi.org/10.1007/s11579-010-0027-9
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.20861.3d schema:alternateName Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA
127 schema:name Division of the Humanities and Social Sciences, California Institute of Technology, 91125, Pasadena, CA, USA
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...