Viscosity critical behaviour at the gel point in a 3d lattice model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-08

AUTHORS

E. Del Gado, L. de Arcangelis, A. Coniglio

ABSTRACT

Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay. More... »

PAGES

359-365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s101890050018

DOI

http://dx.doi.org/10.1007/s101890050018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010141609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \u201cFederico II\u201d, INFM Sezione di Napoli, Mostra d'Oltremare pad. 19, 80125 Napoli, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Gado", 
        "givenName": "E.", 
        "id": "sg:person.0760733264.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760733264.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Second University of Naples", 
          "id": "https://www.grid.ac/institutes/grid.9841.4", 
          "name": [
            "Dipartimento di Ingegneria dell'Informazione, Seconda Universit\u00e0 di Napoli, INFM Sezione di Napoli, via Roma 29, 81031 Aversa (Caserta), Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Arcangelis", 
        "givenName": "L.", 
        "id": "sg:person.01052200217.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052200217.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Scienze Fisiche, Universit\u00e0 di Napoli \u201cFederico II\u201d, INFM Sezione di Napoli, Mostra d'Oltremare pad. 19, 80125 Napoli, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "A.", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-08", 
    "datePublishedReg": "2000-08-01", 
    "description": "Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document}, in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s101890050018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356903", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Viscosity critical behaviour at the gel point in a 3d lattice model", 
    "pagination": "359-365", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3050cbce90369458b24b3b8298ab96916953dca46cfc45324fbaa1c5ddb3fd05"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s101890050018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010141609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s101890050018", 
      "https://app.dimensions.ai/details/publication/pub.1010141609"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s101890050018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s101890050018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s101890050018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s101890050018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s101890050018'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s101890050018 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N5ca91c44320d43ecad010c5fcdb2b24d
4 schema:datePublished 2000-08
5 schema:datePublishedReg 2000-08-01
6 schema:description Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Naf89758e30e24444b815cd78f5fb7374
11 Nb82d14f8975a4be49cc4a77aa8914729
12 sg:journal.1356903
13 schema:name Viscosity critical behaviour at the gel point in a 3d lattice model
14 schema:pagination 359-365
15 schema:productId N98402a25b07f4b71a7bf50e18e84e823
16 N9df4fcd7ab754d368305c9efc501f0c1
17 Nc5fa5bfb7d55448c965c58cf04b1d235
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141609
19 https://doi.org/10.1007/s101890050018
20 schema:sdDatePublished 2019-04-10T22:24
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N513c5df19fae4ae1973b98b513a74873
23 schema:url http://link.springer.com/10.1007/s101890050018
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N2291955ad787462e99a4850df92131af rdf:first sg:person.01227217136.16
28 rdf:rest rdf:nil
29 N513c5df19fae4ae1973b98b513a74873 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N5ca91c44320d43ecad010c5fcdb2b24d rdf:first sg:person.0760733264.77
32 rdf:rest Ndcad131248e142b0b3cac6e6bb0c9ea8
33 N98402a25b07f4b71a7bf50e18e84e823 schema:name readcube_id
34 schema:value 3050cbce90369458b24b3b8298ab96916953dca46cfc45324fbaa1c5ddb3fd05
35 rdf:type schema:PropertyValue
36 N9df4fcd7ab754d368305c9efc501f0c1 schema:name doi
37 schema:value 10.1007/s101890050018
38 rdf:type schema:PropertyValue
39 Naf89758e30e24444b815cd78f5fb7374 schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 Nb82d14f8975a4be49cc4a77aa8914729 schema:volumeNumber 2
42 rdf:type schema:PublicationVolume
43 Nc5fa5bfb7d55448c965c58cf04b1d235 schema:name dimensions_id
44 schema:value pub.1010141609
45 rdf:type schema:PropertyValue
46 Ndcad131248e142b0b3cac6e6bb0c9ea8 rdf:first sg:person.01052200217.49
47 rdf:rest N2291955ad787462e99a4850df92131af
48 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
49 schema:name Psychology and Cognitive Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
52 schema:name Psychology
53 rdf:type schema:DefinedTerm
54 sg:journal.1356903 schema:issn 1292-8941
55 1292-895X
56 schema:name The European Physical Journal E
57 rdf:type schema:Periodical
58 sg:person.01052200217.49 schema:affiliation https://www.grid.ac/institutes/grid.9841.4
59 schema:familyName de Arcangelis
60 schema:givenName L.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052200217.49
62 rdf:type schema:Person
63 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
64 schema:familyName Coniglio
65 schema:givenName A.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
67 rdf:type schema:Person
68 sg:person.0760733264.77 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
69 schema:familyName Del Gado
70 schema:givenName E.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760733264.77
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
74 schema:name Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, INFM Sezione di Napoli, Mostra d'Oltremare pad. 19, 80125 Napoli, Italy, IT
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.9841.4 schema:alternateName Second University of Naples
77 schema:name Dipartimento di Ingegneria dell'Informazione, Seconda Università di Napoli, INFM Sezione di Napoli, via Roma 29, 81031 Aversa (Caserta), Italy, IT
78 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...