A penalized spline estimator for fixed effects panel data models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Peter Pütz, Thomas Kneib

ABSTRACT

Estimating nonlinear effects of continuous covariates by penalized splines is well established for regressions with cross-sectional data as well as for panel data regressions with random effects. Penalized splines are particularly advantageous since they enable both the estimation of unknown nonlinear covariate effects and inferential statements about these effects. The latter are based, for example, on simultaneous confidence bands that provide a simultaneous uncertainty assessment for the whole estimated functions. In this paper, we consider fixed effects panel data models instead of random effects specifications and develop a first-difference approach for the inclusion of penalized splines in this case. We take the resulting dependence structure into account and adapt the construction of simultaneous confidence bands accordingly. In addition, the penalized spline estimates as well as the confidence bands are also made available for derivatives of the estimated effects which are of considerable interest in many application areas. As an empirical illustration, we analyze the dynamics of life satisfaction over the life span based on data from the German Socio-Economic Panel. An open-source software implementation of our methods is available in the R package pamfe. More... »

PAGES

145-166

References to SciGraph publications

Journal

TITLE

AStA Advances in Statistical Analysis

ISSUE

2

VOLUME

102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10182-017-0296-1

DOI

http://dx.doi.org/10.1007/s10182-017-0296-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084817480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Centre for Statistics, Universit\u00e4t G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00fctz", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Chair of Statistics, Faculty of Economic Sciences, Universit\u00e4t G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/rest_a_00222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001578672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2008.00691.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007107270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14490/jjss.42.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008187210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econlet.2006.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econlet.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024915095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12062-013-9085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027224928", 
          "https://doi.org/10.1007/s12062-013-9085-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s026646660420202x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032810790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485252.2014.899360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034381853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jebo.2012.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035745918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econlet.2011.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040076592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485259808832748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043731438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466608090142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044352060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2011.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045649686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0297.2004.00235.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052221696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econlet.2013.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052360350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053318511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.2012.726000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058288083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2012.682809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07350015.2013.775093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058340104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asp035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asp035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8721.2007.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061935912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8721.2007.00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061935912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214507000000978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186007x208768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.tm09165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-ejs593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1074290329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176325631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.1028709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102240980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2313431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102385602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109704884", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "Estimating nonlinear effects of continuous covariates by penalized splines is well established for regressions with cross-sectional data as well as for panel data regressions with random effects. Penalized splines are particularly advantageous since they enable both the estimation of unknown nonlinear covariate effects and inferential statements about these effects. The latter are based, for example, on simultaneous confidence bands that provide a simultaneous uncertainty assessment for the whole estimated functions. In this paper, we consider fixed effects panel data models instead of random effects specifications and develop a first-difference approach for the inclusion of penalized splines in this case. We take the resulting dependence structure into account and adapt the construction of simultaneous confidence bands accordingly. In addition, the penalized spline estimates as well as the confidence bands are also made available for derivatives of the estimated effects which are of considerable interest in many application areas. As an empirical illustration, we analyze the dynamics of life satisfaction over the life span based on data from the German Socio-Economic Panel. An open-source software implementation of our methods is available in the R package pamfe.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10182-017-0296-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1312118", 
        "issn": [
          "1863-8171", 
          "1863-818X"
        ], 
        "name": "AStA Advances in Statistical Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "A penalized spline estimator for fixed effects panel data models", 
    "pagination": "145-166", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed1a1ce61a531b3cd2505b9082575645abc6807f1756bf2964491af7c5873185"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10182-017-0296-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084817480"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10182-017-0296-1", 
      "https://app.dimensions.ai/details/publication/pub.1084817480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10182-017-0296-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10182-017-0296-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10182-017-0296-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10182-017-0296-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10182-017-0296-1'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10182-017-0296-1 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N7bb78f3479894fbabfc564e51a9b0e9e
4 schema:citation sg:pub.10.1007/978-1-4419-0318-1
5 sg:pub.10.1007/s12062-013-9085-0
6 https://app.dimensions.ai/details/publication/pub.1109704884
7 https://doi.org/10.1016/j.econlet.2005.04.002
8 https://doi.org/10.1016/j.econlet.2006.01.019
9 https://doi.org/10.1016/j.econlet.2011.07.014
10 https://doi.org/10.1016/j.econlet.2013.02.037
11 https://doi.org/10.1016/j.jebo.2012.03.008
12 https://doi.org/10.1016/j.jeconom.2008.01.005
13 https://doi.org/10.1016/j.jeconom.2011.09.030
14 https://doi.org/10.1017/cbo9780511755453
15 https://doi.org/10.1017/s026646660420202x
16 https://doi.org/10.1017/s0266466608090142
17 https://doi.org/10.1080/00401706.2012.726000
18 https://doi.org/10.1080/01621459.1993.10476410
19 https://doi.org/10.1080/01621459.2012.682809
20 https://doi.org/10.1080/07350015.2013.775093
21 https://doi.org/10.1080/10485252.2014.899360
22 https://doi.org/10.1080/10485259808832748
23 https://doi.org/10.1093/biomet/asp035
24 https://doi.org/10.1111/j.1467-8721.2007.00479.x
25 https://doi.org/10.1111/j.1467-9868.2008.00691.x
26 https://doi.org/10.1111/j.1468-0297.2004.00235.x
27 https://doi.org/10.1162/rest_a_00222
28 https://doi.org/10.1198/016214507000000978
29 https://doi.org/10.1198/106186007x208768
30 https://doi.org/10.1198/jasa.2010.tm09165
31 https://doi.org/10.1214/10-ejs593
32 https://doi.org/10.1214/aos/1074290329
33 https://doi.org/10.1214/aos/1176325631
34 https://doi.org/10.1214/ss/1038425655
35 https://doi.org/10.14490/jjss.42.81
36 https://doi.org/10.2139/ssrn.1028709
37 https://doi.org/10.2139/ssrn.2313431
38 https://doi.org/10.2307/2371513
39 schema:datePublished 2018-04
40 schema:datePublishedReg 2018-04-01
41 schema:description Estimating nonlinear effects of continuous covariates by penalized splines is well established for regressions with cross-sectional data as well as for panel data regressions with random effects. Penalized splines are particularly advantageous since they enable both the estimation of unknown nonlinear covariate effects and inferential statements about these effects. The latter are based, for example, on simultaneous confidence bands that provide a simultaneous uncertainty assessment for the whole estimated functions. In this paper, we consider fixed effects panel data models instead of random effects specifications and develop a first-difference approach for the inclusion of penalized splines in this case. We take the resulting dependence structure into account and adapt the construction of simultaneous confidence bands accordingly. In addition, the penalized spline estimates as well as the confidence bands are also made available for derivatives of the estimated effects which are of considerable interest in many application areas. As an empirical illustration, we analyze the dynamics of life satisfaction over the life span based on data from the German Socio-Economic Panel. An open-source software implementation of our methods is available in the R package pamfe.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N06d892f2763443b6aed028a1f51befcb
46 N8272797e49ab403896b548115f6ce12a
47 sg:journal.1312118
48 schema:name A penalized spline estimator for fixed effects panel data models
49 schema:pagination 145-166
50 schema:productId N48b8df3611b84b79b4a1fe7969d34c51
51 N52b0eb1b22e744788026f5a27b1395a3
52 N9124579d39ec4f3dbc7686cee4440fe7
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084817480
54 https://doi.org/10.1007/s10182-017-0296-1
55 schema:sdDatePublished 2019-04-11T10:33
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N56733220a28e42a4b16ed04b207ff2c3
58 schema:url https://link.springer.com/10.1007%2Fs10182-017-0296-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N06d892f2763443b6aed028a1f51befcb schema:volumeNumber 102
63 rdf:type schema:PublicationVolume
64 N2697da055f1e4366bc9e1ac9a844bc39 schema:name Chair of Statistics, Faculty of Economic Sciences, Universität Göttingen, Göttingen, Germany
65 rdf:type schema:Organization
66 N48b8df3611b84b79b4a1fe7969d34c51 schema:name readcube_id
67 schema:value ed1a1ce61a531b3cd2505b9082575645abc6807f1756bf2964491af7c5873185
68 rdf:type schema:PropertyValue
69 N52b0eb1b22e744788026f5a27b1395a3 schema:name doi
70 schema:value 10.1007/s10182-017-0296-1
71 rdf:type schema:PropertyValue
72 N56733220a28e42a4b16ed04b207ff2c3 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N7bb78f3479894fbabfc564e51a9b0e9e rdf:first Ncd6d3c05aab74ead84cf7df7cf980c11
75 rdf:rest N8a9ad56ec93149859435f2ce7b9603dc
76 N8272797e49ab403896b548115f6ce12a schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 N8a9ad56ec93149859435f2ce7b9603dc rdf:first sg:person.01272020411.15
79 rdf:rest rdf:nil
80 N9124579d39ec4f3dbc7686cee4440fe7 schema:name dimensions_id
81 schema:value pub.1084817480
82 rdf:type schema:PropertyValue
83 Naa06e9e34dd9453bb25d3826ec65fd30 schema:name Centre for Statistics, Universität Göttingen, Göttingen, Germany
84 rdf:type schema:Organization
85 Ncd6d3c05aab74ead84cf7df7cf980c11 schema:affiliation Naa06e9e34dd9453bb25d3826ec65fd30
86 schema:familyName Pütz
87 schema:givenName Peter
88 rdf:type schema:Person
89 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
90 schema:name Economics
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
93 schema:name Econometrics
94 rdf:type schema:DefinedTerm
95 sg:journal.1312118 schema:issn 1863-8171
96 1863-818X
97 schema:name AStA Advances in Statistical Analysis
98 rdf:type schema:Periodical
99 sg:person.01272020411.15 schema:affiliation N2697da055f1e4366bc9e1ac9a844bc39
100 schema:familyName Kneib
101 schema:givenName Thomas
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4419-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704884
105 https://doi.org/10.1007/978-1-4419-0318-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s12062-013-9085-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027224928
108 https://doi.org/10.1007/s12062-013-9085-0
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1109704884 schema:CreativeWork
111 https://doi.org/10.1016/j.econlet.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024915095
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.econlet.2006.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900501
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.econlet.2011.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076592
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.econlet.2013.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052360350
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jebo.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035745918
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jeconom.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053318511
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jeconom.2011.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045649686
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1017/cbo9780511755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667268
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1017/s026646660420202x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032810790
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/s0266466608090142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044352060
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/00401706.2012.726000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058288083
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/01621459.1993.10476410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304494
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/01621459.2012.682809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305916
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/07350015.2013.775093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058340104
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/10485252.2014.899360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381853
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/10485259808832748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043731438
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/biomet/asp035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421751
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1467-8721.2007.00479.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061935912
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/j.1467-9868.2008.00691.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007107270
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/j.1468-0297.2004.00235.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052221696
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1162/rest_a_00222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001578672
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1198/016214507000000978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198712
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1198/106186007x208768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199582
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1198/jasa.2010.tm09165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200594
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/10-ejs593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391635
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/aos/1074290329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406534
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1214/aos/1176325631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406725
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
166 rdf:type schema:CreativeWork
167 https://doi.org/10.14490/jjss.42.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008187210
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2139/ssrn.1028709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102240980
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2139/ssrn.2313431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102385602
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2307/2371513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898230
174 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...