Ontology type: schema:ScholarlyArticle Open Access: True
2017-04
AUTHORSArmin Hatefi, Mohammad Jafari Jozani
ABSTRACTPartially rank-ordered set (PROS) sampling is a generalization of ranked set sampling in which rankers are not required to fully rank the sampling units in each set, hence having more flexibility to perform the necessary judgemental ranking process. The PROS sampling has a wide range of applications in different fields ranging from environmental and ecological studies to medical research and it has been shown to be superior over ranked set sampling and simple random sampling for estimating the population mean. We study Fisher information content and uncertainty structure of the PROS samples and compare them with those of simple random sample (SRS) and ranked set sample (RSS) counterparts of the same size from the underlying population. We study uncertainty structure in terms of the Shannon entropy, Rényi entropy and Kullback–Leibler (KL) discrimination measures. More... »
PAGES117-149
http://scigraph.springernature.com/pub.10.1007/s10182-016-0277-9
DOIhttp://dx.doi.org/10.1007/s10182-016-0277-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051811929
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Toronto",
"id": "https://www.grid.ac/institutes/grid.17063.33",
"name": [
"The Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada",
"Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Hatefi",
"givenName": "Armin",
"id": "sg:person.010467404445.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467404445.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Manitoba",
"id": "https://www.grid.ac/institutes/grid.21613.37",
"name": [
"Department of Statistics, University of Manitoba, R3T 2N2, Winnipeg, MB, Canada"
],
"type": "Organization"
},
"familyName": "Jozani",
"givenName": "Mohammad Jafari",
"id": "sg:person.014356554721.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356554721.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/00949650412331299193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001789657"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009609902784",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010388613",
"https://doi.org/10.1023/a:1009609902784"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cjs.11167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011079528"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-095x(199903/04)10:2<179::aid-env346>3.0.co;2-#",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019977026"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-095x(199903/04)10:2<179::aid-env346>3.0.co;2-#",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019977026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10651-010-0161-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020025152",
"https://doi.org/10.1007/s10651-010-0161-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmva.2013.03.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020639195"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/bimj.4710340307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020687832"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1023577356",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-21664-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023577356",
"https://doi.org/10.1007/978-0-387-21664-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-21664-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023577356",
"https://doi.org/10.1007/978-0-387-21664-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1071/ar9520385",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024491920"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/icesjms/fsp112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034133776"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/icesjms/fsp112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034133776"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10651-012-0188-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038751357",
"https://doi.org/10.1007/s10651-012-0188-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/sjos.12140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040474270"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5402/2012/568385",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042932634"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-7152(01)00078-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044396403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.0006-341x.2004.00255.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049770634"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1963.10480678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058299752"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03610927708827563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058331964"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1198/000313005x54180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064197149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2530493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069975998"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2556166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069991898"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5705/ss.2012.178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073080441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/p341",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098962136"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-04",
"datePublishedReg": "2017-04-01",
"description": "Partially rank-ordered set (PROS) sampling is a generalization of ranked set sampling in which rankers are not required to fully rank the sampling units in each set, hence having more flexibility to perform the necessary judgemental ranking process. The PROS sampling has a wide range of applications in different fields ranging from environmental and ecological studies to medical research and it has been shown to be superior over ranked set sampling and simple random sampling for estimating the population mean. We study Fisher information content and uncertainty structure of the PROS samples and compare them with those of simple random sample (SRS) and ranked set sample (RSS) counterparts of the same size from the underlying population. We study uncertainty structure in terms of the Shannon entropy, R\u00e9nyi entropy and Kullback\u2013Leibler (KL) discrimination measures.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10182-016-0277-9",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1312118",
"issn": [
"1863-8171",
"1863-818X"
],
"name": "AStA Advances in Statistical Analysis",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "101"
}
],
"name": "Information content of partially rank-ordered set samples",
"pagination": "117-149",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"f6cdbeccbb9ead0985469a2fb7b4bd40e10f68d2c48984d73929ed443b5f80e2"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10182-016-0277-9"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051811929"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10182-016-0277-9",
"https://app.dimensions.ai/details/publication/pub.1051811929"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10182-016-0277-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10182-016-0277-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10182-016-0277-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10182-016-0277-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10182-016-0277-9'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
21 PREDICATES
50 URIs
19 LITERALS
7 BLANK NODES