Bayesian accelerated failure time models based on penalized mixtures of Gaussians: regularization and variable selection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

Susanne Konrath, Ludwig Fahrmeir, Thomas Kneib

ABSTRACT

In many biostatistical applications concerned with the analysis of duration times and especially those including high-dimensional genetic information, the following three extensions of classical accelerated failure time (AFT) models are required: (1) a flexible, nonparametric estimate of the survival time distribution, (2) a structured additive predictor including linear as well as nonlinear effects of continuous covariates and possibly further types of effects such as random or spatial effects, and (3) regularization and variable selection of high-dimensional effect vectors. Although a lot of research has dealt with these features separately, the development of AFT models combining them in a unified framework has not been considered yet. We present a Bayesian approach for modeling and inference in such flexible AFT models, incorporating a penalized Gaussian mixture error distribution, a structured additive predictor with Bayesian P-splines as a main ingredient, and Bayesian versions of ridge and LASSO as well as a spike and slab priors to enforce sparseness. Priors for regression coefficients are conditionally Gaussian, facilitating Markov chain Monte Carlo inference. The proposed model class is extensively tested in simulation studies and applied in the analysis of acute myeloid leukemia survival times considering microarray information as well as clinical covariates as prognostic factors. More... »

PAGES

259-280

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10182-014-0240-6

DOI

http://dx.doi.org/10.1007/s10182-014-0240-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051936564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konrath", 
        "givenName": "Susanne", 
        "id": "sg:person.010377436125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377436125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Chair of Statistics, Georg-August-University G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007863731", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000000238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013282294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000001147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015387493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017682245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2008-02-134411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022186652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00477.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035501778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35494-6_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036107133", 
          "https://doi.org/10.1007/978-3-642-35494-6_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200900064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038899341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200900064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038899341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2006.00524.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214507000000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/1061860043010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186005x63734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-ba506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199533022.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098748222"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "In many biostatistical applications concerned with the analysis of duration times and especially those including high-dimensional genetic information, the following three extensions of classical accelerated failure time (AFT) models are required: (1) a flexible, nonparametric estimate of the survival time distribution, (2) a structured additive predictor including linear as well as nonlinear effects of continuous covariates and possibly further types of effects such as random or spatial effects, and (3) regularization and variable selection of high-dimensional effect vectors. Although a lot of research has dealt with these features separately, the development of AFT models combining them in a unified framework has not been considered yet. We present a Bayesian approach for modeling and inference in such flexible AFT models, incorporating a penalized Gaussian mixture error distribution, a structured additive predictor with Bayesian P-splines as a main ingredient, and Bayesian versions of ridge and LASSO as well as a spike and slab priors to enforce sparseness. Priors for regression coefficients are conditionally Gaussian, facilitating Markov chain Monte Carlo inference. The proposed model class is extensively tested in simulation studies and applied in the analysis of acute myeloid leukemia survival times considering microarray information as well as clinical covariates as prognostic factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10182-014-0240-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312118", 
        "issn": [
          "1863-8171", 
          "1863-818X"
        ], 
        "name": "AStA Advances in Statistical Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "name": "Bayesian accelerated failure time models based on penalized mixtures of Gaussians: regularization and variable selection", 
    "pagination": "259-280", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7652f4ba00e242bbcebd85d87e8a45c86a5e4e08d1d59363bd408918831686f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10182-014-0240-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051936564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10182-014-0240-6", 
      "https://app.dimensions.ai/details/publication/pub.1051936564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10182-014-0240-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10182-014-0240-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10182-014-0240-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10182-014-0240-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10182-014-0240-6'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10182-014-0240-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf332e8d8d9564a79b576ab35ec7f0277
4 schema:citation sg:pub.10.1007/978-3-642-34333-9
5 sg:pub.10.1007/978-3-642-35494-6_10
6 sg:pub.10.1007/s11222-009-9158-3
7 https://app.dimensions.ai/details/publication/pub.1007863731
8 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5
9 https://doi.org/10.1002/bimj.200900064
10 https://doi.org/10.1016/j.csda.2004.10.011
11 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001
12 https://doi.org/10.1111/j.0006-341x.1999.00477.x
13 https://doi.org/10.1111/j.1467-9469.2006.00524.x
14 https://doi.org/10.1182/blood-2008-02-134411
15 https://doi.org/10.1198/016214503000224
16 https://doi.org/10.1198/016214506000000348
17 https://doi.org/10.1198/016214507000000563
18 https://doi.org/10.1198/016214508000000337
19 https://doi.org/10.1198/1061860043010
20 https://doi.org/10.1198/106186005x63734
21 https://doi.org/10.1214/009053604000000238
22 https://doi.org/10.1214/009053604000001147
23 https://doi.org/10.1214/06-ba119
24 https://doi.org/10.1214/10-ba506
25 https://doi.org/10.1214/ss/1038425655
26 https://doi.org/10.2202/1544-6115.1712
27 schema:datePublished 2015-07
28 schema:datePublishedReg 2015-07-01
29 schema:description In many biostatistical applications concerned with the analysis of duration times and especially those including high-dimensional genetic information, the following three extensions of classical accelerated failure time (AFT) models are required: (1) a flexible, nonparametric estimate of the survival time distribution, (2) a structured additive predictor including linear as well as nonlinear effects of continuous covariates and possibly further types of effects such as random or spatial effects, and (3) regularization and variable selection of high-dimensional effect vectors. Although a lot of research has dealt with these features separately, the development of AFT models combining them in a unified framework has not been considered yet. We present a Bayesian approach for modeling and inference in such flexible AFT models, incorporating a penalized Gaussian mixture error distribution, a structured additive predictor with Bayesian P-splines as a main ingredient, and Bayesian versions of ridge and LASSO as well as a spike and slab priors to enforce sparseness. Priors for regression coefficients are conditionally Gaussian, facilitating Markov chain Monte Carlo inference. The proposed model class is extensively tested in simulation studies and applied in the analysis of acute myeloid leukemia survival times considering microarray information as well as clinical covariates as prognostic factors.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N5a219611d4a549efbff0fdcdc9d0588e
34 N7c1af59873614435bc78f0effb15e7c2
35 sg:journal.1312118
36 schema:name Bayesian accelerated failure time models based on penalized mixtures of Gaussians: regularization and variable selection
37 schema:pagination 259-280
38 schema:productId N43d0892c29f04cdcb896679ce0bc5f0a
39 N4a2d2db2c5924752a5ecacd33deb4b53
40 Nb87d39c149f24390a4e3be1261db1e8c
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051936564
42 https://doi.org/10.1007/s10182-014-0240-6
43 schema:sdDatePublished 2019-04-10T17:33
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ne0d83379c65f449e8c9ac7f741552bcc
46 schema:url http://link.springer.com/10.1007%2Fs10182-014-0240-6
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N02fa607b10e7443d85c9a5c5ae0219c0 rdf:first sg:person.01272020411.15
51 rdf:rest rdf:nil
52 N0305a98ea3e8418f8329a707b000f787 rdf:first sg:person.0661512671.36
53 rdf:rest N02fa607b10e7443d85c9a5c5ae0219c0
54 N43d0892c29f04cdcb896679ce0bc5f0a schema:name readcube_id
55 schema:value f7652f4ba00e242bbcebd85d87e8a45c86a5e4e08d1d59363bd408918831686f
56 rdf:type schema:PropertyValue
57 N4a2d2db2c5924752a5ecacd33deb4b53 schema:name dimensions_id
58 schema:value pub.1051936564
59 rdf:type schema:PropertyValue
60 N5a219611d4a549efbff0fdcdc9d0588e schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 N7c1af59873614435bc78f0effb15e7c2 schema:volumeNumber 99
63 rdf:type schema:PublicationVolume
64 Nb87d39c149f24390a4e3be1261db1e8c schema:name doi
65 schema:value 10.1007/s10182-014-0240-6
66 rdf:type schema:PropertyValue
67 Ne0d83379c65f449e8c9ac7f741552bcc schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nf332e8d8d9564a79b576ab35ec7f0277 rdf:first sg:person.010377436125.44
70 rdf:rest N0305a98ea3e8418f8329a707b000f787
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1312118 schema:issn 1863-8171
78 1863-818X
79 schema:name AStA Advances in Statistical Analysis
80 rdf:type schema:Periodical
81 sg:person.010377436125.44 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
82 schema:familyName Konrath
83 schema:givenName Susanne
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010377436125.44
85 rdf:type schema:Person
86 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
87 schema:familyName Kneib
88 schema:givenName Thomas
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
90 rdf:type schema:Person
91 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
92 schema:familyName Fahrmeir
93 schema:givenName Ludwig
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
95 rdf:type schema:Person
96 sg:pub.10.1007/978-3-642-34333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007863731
97 https://doi.org/10.1007/978-3-642-34333-9
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-35494-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036107133
100 https://doi.org/10.1007/978-3-642-35494-6_10
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11222-009-9158-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043662806
103 https://doi.org/10.1007/s11222-009-9158-3
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1007863731 schema:CreativeWork
106 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017682245
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/bimj.200900064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038899341
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.csda.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498897
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098748222
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1111/j.0006-341x.1999.00477.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035501778
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1111/j.1467-9469.2006.00524.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050289937
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1182/blood-2008-02-134411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022186652
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1198/016214503000224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198112
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1198/016214506000000348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198504
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1198/016214507000000563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198673
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1198/016214508000000337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198793
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1198/1061860043010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199409
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1198/106186005x63734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199500
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1214/009053604000000238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013282294
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1214/009053604000001147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015387493
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1214/06-ba119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389485
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1214/10-ba506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391541
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2202/1544-6115.1712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050986505
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
145 schema:name Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
148 schema:name Chair of Statistics, Georg-August-University Göttingen, Göttingen, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...