Penalized likelihood and Bayesian function selection in regression models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

Fabian Scheipl, Thomas Kneib, Ludwig Fahrmeir

ABSTRACT

Challenging research in various fields has driven a wide range of methodological advances in variable selection for regression models with high-dimensional predictors. In comparison, selection of nonlinear functions in models with additive predictors has been considered only more recently. Several competing suggestions have been developed at about the same time and often do not refer to each other. This article provides a state-of-the-art review on function selection, focusing on penalized likelihood and Bayesian concepts, relating various approaches to each other in a unified framework. In an empirical comparison, also including boosting, we evaluate several methods through applications to simulated and real data, thereby providing some guidance on their performance in practice. More... »

PAGES

349-385

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10182-013-0211-3

DOI

http://dx.doi.org/10.1007/s10182-013-0211-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003402625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute of Statistics, Ludwig-Maximilians-University M\u00fcnchen, Ludwigstra\u00dfe 33, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheipl", 
        "givenName": "Fabian", 
        "id": "sg:person.0703502734.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703502734.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Chair of Statistics, Georg-August-University G\u00f6ttinger, Platz der G\u00f6ttinger Sieben 5, 37073, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute of Statistics, Ludwig-Maximilians-University M\u00fcnchen, Ludwigstra\u00dfe 33, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jeconom.2007.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006425879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-ba403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007240878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000001147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015387493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00627.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015719366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00627.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015719366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2009.00718.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015984302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2009.00718.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015984302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01112.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018081846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021238034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021238034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023470890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2011.01015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025545992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2010.00723.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025735375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2011.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027718235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(95)01763-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00578.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034783717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35494-6_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036107133", 
          "https://doi.org/10.1007/978-3-642-35494-6_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038178243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485250601027042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038236226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aos781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049638164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049744920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050835068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051068606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2012.737742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/1061860031301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2009.0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.ap09811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.tm10130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2011.tm10281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053606000000722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064388940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aos692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v043.i14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5705/ss.2011.030a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199533022.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098748222"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Challenging research in various fields has driven a wide range of methodological advances in variable selection for regression models with high-dimensional predictors. In comparison, selection of nonlinear functions in models with additive predictors has been considered only more recently. Several competing suggestions have been developed at about the same time and often do not refer to each other. This article provides a state-of-the-art review on function selection, focusing on penalized likelihood and Bayesian concepts, relating various approaches to each other in a unified framework. In an empirical comparison, also including boosting, we evaluate several methods through applications to simulated and real data, thereby providing some guidance on their performance in practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10182-013-0211-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1312118", 
        "issn": [
          "1863-8171", 
          "1863-818X"
        ], 
        "name": "AStA Advances in Statistical Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "97"
      }
    ], 
    "name": "Penalized likelihood and Bayesian function selection in regression models", 
    "pagination": "349-385", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "103562b9d17637f20fb7d63092fc34ee1595e18b2fb0c2e0b5030b1b1e32ff17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10182-013-0211-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003402625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10182-013-0211-3", 
      "https://app.dimensions.ai/details/publication/pub.1003402625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10182-013-0211-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10182-013-0211-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10182-013-0211-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10182-013-0211-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10182-013-0211-3'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10182-013-0211-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N909efd39213b4b19a576b43c92040a83
4 schema:citation sg:pub.10.1007/978-3-642-35494-6_10
5 sg:pub.10.1007/s11222-009-9158-3
6 https://app.dimensions.ai/details/publication/pub.1051068606
7 https://doi.org/10.1016/0304-4076(95)01763-1
8 https://doi.org/10.1016/j.csda.2006.10.007
9 https://doi.org/10.1016/j.csda.2008.05.032
10 https://doi.org/10.1016/j.csda.2011.02.004
11 https://doi.org/10.1016/j.jeconom.2007.10.003
12 https://doi.org/10.1080/01621459.1993.10476353
13 https://doi.org/10.1080/01621459.2012.737742
14 https://doi.org/10.1080/10485250601027042
15 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001
16 https://doi.org/10.1093/bioinformatics/btm125
17 https://doi.org/10.1111/1467-9868.00328
18 https://doi.org/10.1111/j.1467-9868.2005.00532.x
19 https://doi.org/10.1111/j.1467-9868.2007.00627.x
20 https://doi.org/10.1111/j.1467-9868.2009.00718.x
21 https://doi.org/10.1111/j.1467-9868.2011.01015.x
22 https://doi.org/10.1111/j.1467-9876.2010.00723.x
23 https://doi.org/10.1111/j.1541-0420.2006.00578.x
24 https://doi.org/10.1111/j.1541-0420.2008.01112.x
25 https://doi.org/10.1137/1.9781611970128
26 https://doi.org/10.1198/016214501753382273
27 https://doi.org/10.1198/016214503000125
28 https://doi.org/10.1198/016214506000000735
29 https://doi.org/10.1198/016214508000000337
30 https://doi.org/10.1198/016214508000000346
31 https://doi.org/10.1198/1061860031301
32 https://doi.org/10.1198/jasa.2010.ap09811
33 https://doi.org/10.1198/jasa.2010.tm10130
34 https://doi.org/10.1198/jasa.2011.tm10281
35 https://doi.org/10.1198/tech.2009.0013
36 https://doi.org/10.1201/9780203492024
37 https://doi.org/10.1214/009053604000001147
38 https://doi.org/10.1214/009053606000000722
39 https://doi.org/10.1214/07-sts242
40 https://doi.org/10.1214/09-aos692
41 https://doi.org/10.1214/09-aos781
42 https://doi.org/10.1214/09-ba403
43 https://doi.org/10.1214/ss/1038425655
44 https://doi.org/10.18637/jss.v043.i14
45 https://doi.org/10.5705/ss.2011.030a
46 schema:datePublished 2013-10
47 schema:datePublishedReg 2013-10-01
48 schema:description Challenging research in various fields has driven a wide range of methodological advances in variable selection for regression models with high-dimensional predictors. In comparison, selection of nonlinear functions in models with additive predictors has been considered only more recently. Several competing suggestions have been developed at about the same time and often do not refer to each other. This article provides a state-of-the-art review on function selection, focusing on penalized likelihood and Bayesian concepts, relating various approaches to each other in a unified framework. In an empirical comparison, also including boosting, we evaluate several methods through applications to simulated and real data, thereby providing some guidance on their performance in practice.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N448f7e86dfb34ad2a83738161910e2ef
53 Nad99a70848154093b36fae1de0bc8e2b
54 sg:journal.1312118
55 schema:name Penalized likelihood and Bayesian function selection in regression models
56 schema:pagination 349-385
57 schema:productId N12ff10da05f046ae8531dda8a2aa52ce
58 N9f7623521155416e9339cd53abbf33ea
59 Ne9479723675842678600fca04b200476
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003402625
61 https://doi.org/10.1007/s10182-013-0211-3
62 schema:sdDatePublished 2019-04-10T23:23
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N58a496f82ecf423bba7a231d30820b96
65 schema:url http://link.springer.com/10.1007%2Fs10182-013-0211-3
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0b4d883576174ebaa122cdbfde012b21 schema:name Chair of Statistics, Georg-August-University Göttinger, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany
70 rdf:type schema:Organization
71 N0ea3bc760b0d4ba590715f814fa6b9e2 rdf:first sg:person.01272020411.15
72 rdf:rest N5b2afdcee8464f5a8929a1edd2c61adb
73 N12ff10da05f046ae8531dda8a2aa52ce schema:name dimensions_id
74 schema:value pub.1003402625
75 rdf:type schema:PropertyValue
76 N448f7e86dfb34ad2a83738161910e2ef schema:volumeNumber 97
77 rdf:type schema:PublicationVolume
78 N58a496f82ecf423bba7a231d30820b96 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N5b2afdcee8464f5a8929a1edd2c61adb rdf:first sg:person.0661512671.36
81 rdf:rest rdf:nil
82 N909efd39213b4b19a576b43c92040a83 rdf:first sg:person.0703502734.13
83 rdf:rest N0ea3bc760b0d4ba590715f814fa6b9e2
84 N9f7623521155416e9339cd53abbf33ea schema:name readcube_id
85 schema:value 103562b9d17637f20fb7d63092fc34ee1595e18b2fb0c2e0b5030b1b1e32ff17
86 rdf:type schema:PropertyValue
87 Nad99a70848154093b36fae1de0bc8e2b schema:issueNumber 4
88 rdf:type schema:PublicationIssue
89 Ne9479723675842678600fca04b200476 schema:name doi
90 schema:value 10.1007/s10182-013-0211-3
91 rdf:type schema:PropertyValue
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
96 schema:name Statistics
97 rdf:type schema:DefinedTerm
98 sg:journal.1312118 schema:issn 1863-8171
99 1863-818X
100 schema:name AStA Advances in Statistical Analysis
101 rdf:type schema:Periodical
102 sg:person.01272020411.15 schema:affiliation N0b4d883576174ebaa122cdbfde012b21
103 schema:familyName Kneib
104 schema:givenName Thomas
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
106 rdf:type schema:Person
107 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
108 schema:familyName Fahrmeir
109 schema:givenName Ludwig
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
111 rdf:type schema:Person
112 sg:person.0703502734.13 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
113 schema:familyName Scheipl
114 schema:givenName Fabian
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703502734.13
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-642-35494-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036107133
118 https://doi.org/10.1007/978-3-642-35494-6_10
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11222-009-9158-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043662806
121 https://doi.org/10.1007/s11222-009-9158-3
122 rdf:type schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1051068606 schema:CreativeWork
124 https://doi.org/10.1016/0304-4076(95)01763-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307194
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.csda.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554569
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.csda.2008.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023470890
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.csda.2011.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027718235
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jeconom.2007.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006425879
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/01621459.1993.10476353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304437
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01621459.2012.737742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305995
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/10485250601027042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038236226
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098748222
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/bioinformatics/btm125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038178243
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/1467-9868.00328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050835068
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1467-9868.2005.00532.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021238034
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1467-9868.2007.00627.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015719366
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1467-9868.2009.00718.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015984302
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1467-9868.2011.01015.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025545992
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1467-9876.2010.00723.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025735375
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1541-0420.2006.00578.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034783717
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1541-0420.2008.01112.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018081846
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/1.9781611970128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555835
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1198/016214503000125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198102
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1198/016214506000000735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198542
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1198/016214508000000337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198793
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1198/016214508000000346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198794
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1198/1061860031301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199356
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1198/jasa.2010.ap09811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200562
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1198/jasa.2010.tm10130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200632
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1198/jasa.2011.tm10281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200744
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1198/tech.2009.0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199686
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1201/9780203492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068606
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1214/009053604000001147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015387493
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1214/009053606000000722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064388940
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1214/09-aos692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390880
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1214/09-aos781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049638164
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1214/09-ba403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007240878
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
197 rdf:type schema:CreativeWork
198 https://doi.org/10.18637/jss.v043.i14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672657
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5705/ss.2011.030a schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080329
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
203 schema:name Institute of Statistics, Ludwig-Maximilians-University München, Ludwigstraße 33, 80539, Munich, Germany
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...