Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-18

AUTHORS

Masaki Hara, Naoki Yanagisawa, Akihito Ohta, Kumiko Momoki, Ken Tsuchiya, Kosaku Nitta, Minoru Ando

ABSTRACT

BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6 years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR ≥ 30 % from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran–Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2 % during the follow-up. The average of 6 annual eGFR decline rates was 2.01 ± 0.09 ml/min/1.73 m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend = 0.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95 % confidence interval), 1.77 (1.07–3.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients. More... »

PAGES

275-282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9

DOI

http://dx.doi.org/10.1007/s10157-016-1281-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035712419

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27194410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-HIV Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comorbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dyslipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Odds Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tokyo", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Up-Regulation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Masaki", 
        "id": "sg:person.0731101030.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731101030.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Infectious Diseases, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagisawa", 
        "givenName": "Naoki", 
        "id": "sg:person.01167203046.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167203046.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415479.a", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohta", 
        "givenName": "Akihito", 
        "id": "sg:person.0761361220.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761361220.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Momoki", 
        "givenName": "Kumiko", 
        "id": "sg:person.013411124341.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411124341.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuchiya", 
        "givenName": "Ken", 
        "id": "sg:person.0721731021.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721731021.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nitta", 
        "givenName": "Kosaku", 
        "id": "sg:person.01203072055.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203072055.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "Minoru", 
        "id": "sg:person.01000373557.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000373557.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bmt.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358194", 
          "https://doi.org/10.1038/bmt.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.31.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036693970", 
          "https://doi.org/10.1291/hypres.31.433"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-18", 
    "datePublishedReg": "2016-05-18", 
    "description": "BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6\u00a0years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR\u00a0\u2265\u00a030\u00a0% from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran\u2013Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2\u00a0% during the follow-up. The average of 6 annual eGFR decline rates was 2.01\u00a0\u00b1\u00a00.09\u00a0ml/min/1.73\u00a0m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend\u00a0=\u00a00.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95\u00a0% confidence interval), 1.77 (1.07\u20133.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10157-016-1281-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1117096", 
        "issn": [
          "1342-1751", 
          "1437-7799"
        ], 
        "name": "Clinical and Experimental Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "renal function decline", 
      "function decline", 
      "risk factors", 
      "annual eGFR decline rate", 
      "density lipoprotein cholesterol levels", 
      "MethodsA retrospective cohort study", 
      "multivariate logistic regression model", 
      "age-matched controls", 
      "prevalence of CKD", 
      "eGFR decline rate", 
      "retrospective cohort study", 
      "glomerular filtration rate", 
      "lipoprotein cholesterol levels", 
      "significant risk factors", 
      "Cochran-Armitage test", 
      "logistic regression models", 
      "lipid abnormalities", 
      "cohort study", 
      "filtration rate", 
      "cholesterol levels", 
      "rate of decline", 
      "patients", 
      "HIV", 
      "EGFR", 
      "linear mixed effects models", 
      "CKD", 
      "mixed effects models", 
      "quartile", 
      "HDL", 
      "effects model", 
      "median value", 
      "regression models", 
      "years", 
      "dyslipidemia", 
      "decrease", 
      "decline", 
      "levels", 
      "cohort", 
      "prevalence", 
      "abnormalities", 
      "baseline", 
      "rate", 
      "decline rate", 
      "factors", 
      "risk", 
      "rapid rate", 
      "period", 
      "control", 
      "relationship", 
      "study", 
      "test", 
      "average", 
      "m2/year", 
      "model", 
      "values", 
      "distribution", 
      "distribution of decreases", 
      "ConclusionIncreased"
    ], 
    "name": "Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients", 
    "pagination": "275-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035712419"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10157-016-1281-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27194410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10157-016-1281-9", 
      "https://app.dimensions.ai/details/publication/pub.1035712419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10157-016-1281-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      22 PREDICATES      113 URIs      103 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10157-016-1281-9 schema:about N053e5768575c46f9953acffd6a8a1f0f
2 N0938768f4faa4b638da9fa4494487f98
3 N3268da1e95ac41ed811a2d2ad69590d9
4 N50993cc6b7c54acbbbd0cfefa29ea469
5 N50a08dea764c4f77a3d3b8fba8a70ece
6 N535786e075a2435981c1f491ab46c71e
7 N5b7701076009464dae71ca4230ec739e
8 N617780aca11b497c96d51d7975070f71
9 N62a59add059d436aae1daa81e602ff03
10 N687d7f760cd64f81b8c787ed80fbfcad
11 N6a6d4356a6204527b59123fd88daaab7
12 N6d8b94734881493cbf57fee1dc6b7400
13 N7a05377177b2479987b42720b82354ea
14 N8790becf88884d31ad88a3688965051d
15 N87d24d28e183401789258c0fdc56ad1f
16 N96adf819d11e40eea8d1233088871908
17 N9aba26a272424d16881e35b39900bffa
18 Na5bea611e0794268a0a451b903f1d63d
19 Nadde7a501bac4b13b125800a2a510d2f
20 Nb897064ab8eb472a99dd04b01c28f4df
21 Nbdd565d6c4f74addb3bfb0de6a975cc4
22 Nc0f198d83a53406cb438cafc18ffa5aa
23 Nc80043506cf4412b9b95ad6d05726ec5
24 Nddf839ed100841e5b0f29ea4b12eb798
25 Nde58bc7b1a984223b89d029177849f85
26 Ne3d16b1607d44253b91a3466c9e23105
27 Ne6a800f36e0346ffbbde284672f26fcf
28 anzsrc-for:11
29 anzsrc-for:1103
30 schema:author N1a4e5d1012314a03b6ce19540844ad34
31 schema:citation sg:pub.10.1038/bmt.2012.244
32 sg:pub.10.1291/hypres.31.433
33 schema:datePublished 2016-05-18
34 schema:datePublishedReg 2016-05-18
35 schema:description BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6 years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR ≥ 30 % from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran–Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2 % during the follow-up. The average of 6 annual eGFR decline rates was 2.01 ± 0.09 ml/min/1.73 m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend = 0.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95 % confidence interval), 1.77 (1.07–3.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients.
36 schema:genre article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N49ca5a9893014ecdb94c722ff22f086a
40 N699f73b4fc9e4af79267d399b79b0252
41 sg:journal.1117096
42 schema:keywords CKD
43 Cochran-Armitage test
44 ConclusionIncreased
45 EGFR
46 HDL
47 HIV
48 MethodsA retrospective cohort study
49 abnormalities
50 age-matched controls
51 annual eGFR decline rate
52 average
53 baseline
54 cholesterol levels
55 cohort
56 cohort study
57 control
58 decline
59 decline rate
60 decrease
61 density lipoprotein cholesterol levels
62 distribution
63 distribution of decreases
64 dyslipidemia
65 eGFR decline rate
66 effects model
67 factors
68 filtration rate
69 function decline
70 glomerular filtration rate
71 levels
72 linear mixed effects models
73 lipid abnormalities
74 lipoprotein cholesterol levels
75 logistic regression models
76 m2/year
77 median value
78 mixed effects models
79 model
80 multivariate logistic regression model
81 patients
82 period
83 prevalence
84 prevalence of CKD
85 quartile
86 rapid rate
87 rate
88 rate of decline
89 regression models
90 relationship
91 renal function decline
92 retrospective cohort study
93 risk
94 risk factors
95 significant risk factors
96 study
97 test
98 values
99 years
100 schema:name Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients
101 schema:pagination 275-282
102 schema:productId N2bc23d4be3704443b782f556a338986c
103 N394953124c3f481e88dbc6d042f49660
104 N822f64ab45494cfaaadc7243bd78b429
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035712419
106 https://doi.org/10.1007/s10157-016-1281-9
107 schema:sdDatePublished 2022-01-01T18:40
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N5bbbe91bcb934956aae87e9f1d589f52
110 schema:url https://doi.org/10.1007/s10157-016-1281-9
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N053e5768575c46f9953acffd6a8a1f0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Kidney
116 rdf:type schema:DefinedTerm
117 N0938768f4faa4b638da9fa4494487f98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Prevalence
119 rdf:type schema:DefinedTerm
120 N1a4e5d1012314a03b6ce19540844ad34 rdf:first sg:person.0731101030.51
121 rdf:rest N864d86b43d064852a7924f1a53f69fb0
122 N2bc23d4be3704443b782f556a338986c schema:name pubmed_id
123 schema:value 27194410
124 rdf:type schema:PropertyValue
125 N3268da1e95ac41ed811a2d2ad69590d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Glomerular Filtration Rate
127 rdf:type schema:DefinedTerm
128 N394953124c3f481e88dbc6d042f49660 schema:name dimensions_id
129 schema:value pub.1035712419
130 rdf:type schema:PropertyValue
131 N3966fb0b88a04ba7996bafa7657ffd9f rdf:first sg:person.0761361220.66
132 rdf:rest N53d45e6ce29d47af813d993ff07ba983
133 N49ca5a9893014ecdb94c722ff22f086a schema:volumeNumber 21
134 rdf:type schema:PublicationVolume
135 N50993cc6b7c54acbbbd0cfefa29ea469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Multivariate Analysis
137 rdf:type schema:DefinedTerm
138 N50a08dea764c4f77a3d3b8fba8a70ece schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Tokyo
140 rdf:type schema:DefinedTerm
141 N535786e075a2435981c1f491ab46c71e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Linear Models
143 rdf:type schema:DefinedTerm
144 N53d45e6ce29d47af813d993ff07ba983 rdf:first sg:person.013411124341.34
145 rdf:rest Nb0da4f6fdabc47f880354d474e45aef7
146 N5b7701076009464dae71ca4230ec739e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name HIV Infections
148 rdf:type schema:DefinedTerm
149 N5bbbe91bcb934956aae87e9f1d589f52 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N617780aca11b497c96d51d7975070f71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Chi-Square Distribution
153 rdf:type schema:DefinedTerm
154 N62a59add059d436aae1daa81e602ff03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Female
156 rdf:type schema:DefinedTerm
157 N687d7f760cd64f81b8c787ed80fbfcad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Incidence
159 rdf:type schema:DefinedTerm
160 N699f73b4fc9e4af79267d399b79b0252 schema:issueNumber 2
161 rdf:type schema:PublicationIssue
162 N6a6d4356a6204527b59123fd88daaab7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Logistic Models
164 rdf:type schema:DefinedTerm
165 N6d8b94734881493cbf57fee1dc6b7400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Retrospective Studies
167 rdf:type schema:DefinedTerm
168 N7a05377177b2479987b42720b82354ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Renal Insufficiency, Chronic
170 rdf:type schema:DefinedTerm
171 N822f64ab45494cfaaadc7243bd78b429 schema:name doi
172 schema:value 10.1007/s10157-016-1281-9
173 rdf:type schema:PropertyValue
174 N864d86b43d064852a7924f1a53f69fb0 rdf:first sg:person.01167203046.28
175 rdf:rest N3966fb0b88a04ba7996bafa7657ffd9f
176 N87671e2bbfab4284be1c06a50301a627 rdf:first sg:person.01203072055.54
177 rdf:rest Na83b35dd9f594555afc00b16e2645e22
178 N8790becf88884d31ad88a3688965051d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Odds Ratio
180 rdf:type schema:DefinedTerm
181 N87d24d28e183401789258c0fdc56ad1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adult
183 rdf:type schema:DefinedTerm
184 N96adf819d11e40eea8d1233088871908 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Time Factors
186 rdf:type schema:DefinedTerm
187 N9aba26a272424d16881e35b39900bffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Dyslipidemias
189 rdf:type schema:DefinedTerm
190 Na5bea611e0794268a0a451b903f1d63d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Comorbidity
192 rdf:type schema:DefinedTerm
193 Na83b35dd9f594555afc00b16e2645e22 rdf:first sg:person.01000373557.74
194 rdf:rest rdf:nil
195 Nadde7a501bac4b13b125800a2a510d2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Biomarkers
197 rdf:type schema:DefinedTerm
198 Nb0da4f6fdabc47f880354d474e45aef7 rdf:first sg:person.0721731021.30
199 rdf:rest N87671e2bbfab4284be1c06a50301a627
200 Nb897064ab8eb472a99dd04b01c28f4df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Male
202 rdf:type schema:DefinedTerm
203 Nbdd565d6c4f74addb3bfb0de6a975cc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Humans
205 rdf:type schema:DefinedTerm
206 Nc0f198d83a53406cb438cafc18ffa5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Risk Factors
208 rdf:type schema:DefinedTerm
209 Nc80043506cf4412b9b95ad6d05726ec5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Middle Aged
211 rdf:type schema:DefinedTerm
212 Nddf839ed100841e5b0f29ea4b12eb798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Up-Regulation
214 rdf:type schema:DefinedTerm
215 Nde58bc7b1a984223b89d029177849f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Cholesterol
217 rdf:type schema:DefinedTerm
218 Ne3d16b1607d44253b91a3466c9e23105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Disease Progression
220 rdf:type schema:DefinedTerm
221 Ne6a800f36e0346ffbbde284672f26fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Anti-HIV Agents
223 rdf:type schema:DefinedTerm
224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
225 schema:name Medical and Health Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
228 schema:name Clinical Sciences
229 rdf:type schema:DefinedTerm
230 sg:journal.1117096 schema:issn 1342-1751
231 1437-7799
232 schema:name Clinical and Experimental Nephrology
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.01000373557.74 schema:affiliation grid-institutes:None
236 schema:familyName Ando
237 schema:givenName Minoru
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000373557.74
239 rdf:type schema:Person
240 sg:person.01167203046.28 schema:affiliation grid-institutes:grid.410818.4
241 schema:familyName Yanagisawa
242 schema:givenName Naoki
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167203046.28
244 rdf:type schema:Person
245 sg:person.01203072055.54 schema:affiliation grid-institutes:grid.410818.4
246 schema:familyName Nitta
247 schema:givenName Kosaku
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203072055.54
249 rdf:type schema:Person
250 sg:person.013411124341.34 schema:affiliation grid-institutes:grid.410818.4
251 schema:familyName Momoki
252 schema:givenName Kumiko
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411124341.34
254 rdf:type schema:Person
255 sg:person.0721731021.30 schema:affiliation grid-institutes:grid.410818.4
256 schema:familyName Tsuchiya
257 schema:givenName Ken
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721731021.30
259 rdf:type schema:Person
260 sg:person.0731101030.51 schema:affiliation grid-institutes:grid.410818.4
261 schema:familyName Hara
262 schema:givenName Masaki
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731101030.51
264 rdf:type schema:Person
265 sg:person.0761361220.66 schema:affiliation grid-institutes:grid.415479.a
266 schema:familyName Ohta
267 schema:givenName Akihito
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761361220.66
269 rdf:type schema:Person
270 sg:pub.10.1038/bmt.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358194
271 https://doi.org/10.1038/bmt.2012.244
272 rdf:type schema:CreativeWork
273 sg:pub.10.1291/hypres.31.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036693970
274 https://doi.org/10.1291/hypres.31.433
275 rdf:type schema:CreativeWork
276 grid-institutes:None schema:alternateName Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan
277 schema:name Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan
278 Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
279 rdf:type schema:Organization
280 grid-institutes:grid.410818.4 schema:alternateName Department IV of Internal Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
281 schema:name Department IV of Internal Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
282 Division of Infectious Diseases, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
283 Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
284 rdf:type schema:Organization
285 grid-institutes:grid.415479.a schema:alternateName Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
286 schema:name Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...