Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-18

AUTHORS

Masaki Hara, Naoki Yanagisawa, Akihito Ohta, Kumiko Momoki, Ken Tsuchiya, Kosaku Nitta, Minoru Ando

ABSTRACT

BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6 years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR ≥ 30 % from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran–Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2 % during the follow-up. The average of 6 annual eGFR decline rates was 2.01 ± 0.09 ml/min/1.73 m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend = 0.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95 % confidence interval), 1.77 (1.07–3.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients. More... »

PAGES

275-282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9

DOI

http://dx.doi.org/10.1007/s10157-016-1281-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035712419

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27194410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-HIV Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comorbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dyslipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Odds Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tokyo", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Up-Regulation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Masaki", 
        "id": "sg:person.0731101030.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731101030.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Infectious Diseases, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagisawa", 
        "givenName": "Naoki", 
        "id": "sg:person.01167203046.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167203046.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415479.a", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohta", 
        "givenName": "Akihito", 
        "id": "sg:person.0761361220.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761361220.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Momoki", 
        "givenName": "Kumiko", 
        "id": "sg:person.013411124341.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411124341.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuchiya", 
        "givenName": "Ken", 
        "id": "sg:person.0721731021.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721731021.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department IV of Internal Medicine, Tokyo Women\u2019s Medical University, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nitta", 
        "givenName": "Kosaku", 
        "id": "sg:person.01203072055.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203072055.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan", 
            "Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "Minoru", 
        "id": "sg:person.01000373557.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000373557.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bmt.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358194", 
          "https://doi.org/10.1038/bmt.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.31.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036693970", 
          "https://doi.org/10.1291/hypres.31.433"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-18", 
    "datePublishedReg": "2016-05-18", 
    "description": "BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6\u00a0years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR\u00a0\u2265\u00a030\u00a0% from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran\u2013Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2\u00a0% during the follow-up. The average of 6 annual eGFR decline rates was 2.01\u00a0\u00b1\u00a00.09\u00a0ml/min/1.73\u00a0m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend\u00a0=\u00a00.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95\u00a0% confidence interval), 1.77 (1.07\u20133.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10157-016-1281-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1117096", 
        "issn": [
          "1342-1751", 
          "1437-7799"
        ], 
        "name": "Clinical and Experimental Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "renal function decline", 
      "function decline", 
      "risk factors", 
      "annual eGFR decline rate", 
      "MethodsA retrospective cohort study", 
      "density lipoprotein cholesterol levels", 
      "multivariate logistic regression model", 
      "eGFR decline rate", 
      "retrospective cohort study", 
      "lipoprotein cholesterol levels", 
      "prevalence of CKD", 
      "glomerular filtration rate", 
      "significant risk factors", 
      "age-matched controls", 
      "Cochran-Armitage test", 
      "logistic regression models", 
      "lipid abnormalities", 
      "cohort study", 
      "filtration rate", 
      "cholesterol levels", 
      "patients", 
      "rate of decline", 
      "HIV", 
      "linear mixed effects models", 
      "EGFR", 
      "mixed effects models", 
      "CKD", 
      "quartile", 
      "HDL", 
      "effects model", 
      "median value", 
      "regression models", 
      "years", 
      "dyslipidemia", 
      "levels", 
      "decrease", 
      "decline", 
      "cohort", 
      "abnormalities", 
      "prevalence", 
      "ConclusionIncreased", 
      "baseline", 
      "rate", 
      "factors", 
      "risk", 
      "decline rate", 
      "rapid rate", 
      "period", 
      "control", 
      "relationship", 
      "study", 
      "m2/year", 
      "test", 
      "average", 
      "model", 
      "values", 
      "distribution"
    ], 
    "name": "Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients", 
    "pagination": "275-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035712419"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10157-016-1281-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27194410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10157-016-1281-9", 
      "https://app.dimensions.ai/details/publication/pub.1035712419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_698.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10157-016-1281-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10157-016-1281-9'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      22 PREDICATES      112 URIs      102 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10157-016-1281-9 schema:about N0d17d6be43b24d0cb9d6fe403c699d8d
2 N1b811732800b46fc9ff05b39feb5cca6
3 N1c599976e1a94407994ea878224fbb71
4 N21fad3f22c1546a9965ff7f1a1fdf99a
5 N22fcb958ddf44a96b0ef39f6c37bce98
6 N35fd8dc2242046bebdf772a1c2daba7d
7 N367188f45d964a49bfa2d2174df8d805
8 N3a96b49151f14adfa28d3068b9570467
9 N3c2406cd67d84a539f55088e25f838d7
10 N433b054805b844448a1e650b2defaaf1
11 N4ad1c62519a446dcbb5e968cc6a74d91
12 N5f769ae593094c78a371abea6f59ba0f
13 N747577a1327346bb9b23d9accea55ad2
14 N7554a950994e4a38ab96ea53bd73bbd6
15 N8d312ee46991449dbabeb59cabeeecbd
16 N9eca84b6c34a4202b6aa2e8de2c8512f
17 Na4184b9d86f14b01bdb30a89aabc353f
18 Nb1491c81edd54510aff812d26fd86299
19 Nc82df9410313406a8c11a8f6dcfdb0c5
20 Ncf293dab32dd419aa6454c5ed854cad4
21 Nd2f240ec634143018b7fbefbaa218441
22 Nd79199c7499e4e179f708789b9282abf
23 Nddd984ee32f94cd194a128545ef56d6d
24 Ne0e0d529aa4e4cf4b1e06ca172b73228
25 Nef2702c93feb40ddb064fb4c9b3f7bb3
26 Nf62092f1753145a89c27765ca668614a
27 Nff4d219f1e2944e6a37ee4ab973673b4
28 anzsrc-for:11
29 anzsrc-for:1103
30 schema:author Nbeb007dc11974edfbe881724505f9cae
31 schema:citation sg:pub.10.1038/bmt.2012.244
32 sg:pub.10.1291/hypres.31.433
33 schema:datePublished 2016-05-18
34 schema:datePublishedReg 2016-05-18
35 schema:description BackgroundThe risk of developing CKD is increased in HIV-infected patients; however, the relationship between renal function decline and lipid abnormalities currently remains unclear in these patients.MethodsA retrospective cohort study was conducted on 661 HIV-infected patients, whose estimated glomerular filtration rates (eGFRs) were consecutively measured over 6 years. The rate of declines in eGFR per year was calculated, with decreases being evaluated using a linear mixed effect model. The distribution of decreases in eGFR ≥ 30 % from baseline during the follow-up period was compared across quartiles of non-high-density lipoprotein cholesterol (HDL-C) levels using the Cochran–Armitage test. A multivariate logistic regression model was built to examine the relationship between dyslipidemia and decreases in eGFR.ResultsThe prevalence of CKD increased from 8.5 to 21.2 % during the follow-up. The average of 6 annual eGFR decline rates was 2.01 ± 0.09 ml/min/1.73 m2/year, which was more than 6-fold higher than that of age-matched controls. The distribution of decreases in eGFR significantly increased across the quartiles of non-HDL-C (p value for trend = 0.0359). Non-HDL-C levels greater than the median value of the cohort were identified as a significant risk factor for decreased eGFR [odds ratio (95 % confidence interval), 1.77 (1.07–3.00)].ConclusionIncreased non-HDL-C levels are a risk factor for renal function decline in HIV-infected patients.
36 schema:genre article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N28487374e7f54f5abefe6378ba9e3304
40 N47472fe7f7b44c07ad03ebcd93fb936f
41 sg:journal.1117096
42 schema:keywords CKD
43 Cochran-Armitage test
44 ConclusionIncreased
45 EGFR
46 HDL
47 HIV
48 MethodsA retrospective cohort study
49 abnormalities
50 age-matched controls
51 annual eGFR decline rate
52 average
53 baseline
54 cholesterol levels
55 cohort
56 cohort study
57 control
58 decline
59 decline rate
60 decrease
61 density lipoprotein cholesterol levels
62 distribution
63 dyslipidemia
64 eGFR decline rate
65 effects model
66 factors
67 filtration rate
68 function decline
69 glomerular filtration rate
70 levels
71 linear mixed effects models
72 lipid abnormalities
73 lipoprotein cholesterol levels
74 logistic regression models
75 m2/year
76 median value
77 mixed effects models
78 model
79 multivariate logistic regression model
80 patients
81 period
82 prevalence
83 prevalence of CKD
84 quartile
85 rapid rate
86 rate
87 rate of decline
88 regression models
89 relationship
90 renal function decline
91 retrospective cohort study
92 risk
93 risk factors
94 significant risk factors
95 study
96 test
97 values
98 years
99 schema:name Increased non-HDL-C level linked with a rapid rate of renal function decline in HIV-infected patients
100 schema:pagination 275-282
101 schema:productId N0ee71625a7924ebf9225c766bdfee8e9
102 Naafd8b7985aa461ab94937c669f181ef
103 Nf3f3c76fd7e94b88852cd29c862d8285
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035712419
105 https://doi.org/10.1007/s10157-016-1281-9
106 schema:sdDatePublished 2022-05-20T07:32
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N91da27c181664f72a40dc06c989eeab1
109 schema:url https://doi.org/10.1007/s10157-016-1281-9
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N096baf31f0824617a8f9820647ec1ef5 rdf:first sg:person.0761361220.66
114 rdf:rest N701ccd98f653443dacc024ab77570f5c
115 N0d17d6be43b24d0cb9d6fe403c699d8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Dyslipidemias
117 rdf:type schema:DefinedTerm
118 N0ee71625a7924ebf9225c766bdfee8e9 schema:name doi
119 schema:value 10.1007/s10157-016-1281-9
120 rdf:type schema:PropertyValue
121 N1b811732800b46fc9ff05b39feb5cca6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Kidney
123 rdf:type schema:DefinedTerm
124 N1c599976e1a94407994ea878224fbb71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Tokyo
126 rdf:type schema:DefinedTerm
127 N21fad3f22c1546a9965ff7f1a1fdf99a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Chi-Square Distribution
129 rdf:type schema:DefinedTerm
130 N22fcb958ddf44a96b0ef39f6c37bce98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Cholesterol
132 rdf:type schema:DefinedTerm
133 N28487374e7f54f5abefe6378ba9e3304 schema:issueNumber 2
134 rdf:type schema:PublicationIssue
135 N35fd8dc2242046bebdf772a1c2daba7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Adult
137 rdf:type schema:DefinedTerm
138 N367188f45d964a49bfa2d2174df8d805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Linear Models
140 rdf:type schema:DefinedTerm
141 N3a96b49151f14adfa28d3068b9570467 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name HIV Infections
143 rdf:type schema:DefinedTerm
144 N3c2406cd67d84a539f55088e25f838d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Glomerular Filtration Rate
146 rdf:type schema:DefinedTerm
147 N433b054805b844448a1e650b2defaaf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Comorbidity
149 rdf:type schema:DefinedTerm
150 N47472fe7f7b44c07ad03ebcd93fb936f schema:volumeNumber 21
151 rdf:type schema:PublicationVolume
152 N4ad1c62519a446dcbb5e968cc6a74d91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Female
154 rdf:type schema:DefinedTerm
155 N50d2354b36a4465ba087a0f749ca23fa rdf:first sg:person.01203072055.54
156 rdf:rest N7316b2d083094b5eb2956ae791024f51
157 N5f769ae593094c78a371abea6f59ba0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 N701ccd98f653443dacc024ab77570f5c rdf:first sg:person.013411124341.34
161 rdf:rest Nf0b72b7205684c9fa26e9b79ddeb093f
162 N7316b2d083094b5eb2956ae791024f51 rdf:first sg:person.01000373557.74
163 rdf:rest rdf:nil
164 N747577a1327346bb9b23d9accea55ad2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Middle Aged
166 rdf:type schema:DefinedTerm
167 N7554a950994e4a38ab96ea53bd73bbd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Disease Progression
169 rdf:type schema:DefinedTerm
170 N833c0602db4844b4aa81c94d9b4601d3 rdf:first sg:person.01167203046.28
171 rdf:rest N096baf31f0824617a8f9820647ec1ef5
172 N8d312ee46991449dbabeb59cabeeecbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Time Factors
174 rdf:type schema:DefinedTerm
175 N91da27c181664f72a40dc06c989eeab1 schema:name Springer Nature - SN SciGraph project
176 rdf:type schema:Organization
177 N9eca84b6c34a4202b6aa2e8de2c8512f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Up-Regulation
179 rdf:type schema:DefinedTerm
180 Na4184b9d86f14b01bdb30a89aabc353f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Prevalence
182 rdf:type schema:DefinedTerm
183 Naafd8b7985aa461ab94937c669f181ef schema:name dimensions_id
184 schema:value pub.1035712419
185 rdf:type schema:PropertyValue
186 Nb1491c81edd54510aff812d26fd86299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Retrospective Studies
188 rdf:type schema:DefinedTerm
189 Nbeb007dc11974edfbe881724505f9cae rdf:first sg:person.0731101030.51
190 rdf:rest N833c0602db4844b4aa81c94d9b4601d3
191 Nc82df9410313406a8c11a8f6dcfdb0c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Odds Ratio
193 rdf:type schema:DefinedTerm
194 Ncf293dab32dd419aa6454c5ed854cad4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Logistic Models
196 rdf:type schema:DefinedTerm
197 Nd2f240ec634143018b7fbefbaa218441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Incidence
199 rdf:type schema:DefinedTerm
200 Nd79199c7499e4e179f708789b9282abf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Risk Factors
202 rdf:type schema:DefinedTerm
203 Nddd984ee32f94cd194a128545ef56d6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Anti-HIV Agents
205 rdf:type schema:DefinedTerm
206 Ne0e0d529aa4e4cf4b1e06ca172b73228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Male
208 rdf:type schema:DefinedTerm
209 Nef2702c93feb40ddb064fb4c9b3f7bb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Renal Insufficiency, Chronic
211 rdf:type schema:DefinedTerm
212 Nf0b72b7205684c9fa26e9b79ddeb093f rdf:first sg:person.0721731021.30
213 rdf:rest N50d2354b36a4465ba087a0f749ca23fa
214 Nf3f3c76fd7e94b88852cd29c862d8285 schema:name pubmed_id
215 schema:value 27194410
216 rdf:type schema:PropertyValue
217 Nf62092f1753145a89c27765ca668614a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Multivariate Analysis
219 rdf:type schema:DefinedTerm
220 Nff4d219f1e2944e6a37ee4ab973673b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Biomarkers
222 rdf:type schema:DefinedTerm
223 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
224 schema:name Medical and Health Sciences
225 rdf:type schema:DefinedTerm
226 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
227 schema:name Clinical Sciences
228 rdf:type schema:DefinedTerm
229 sg:journal.1117096 schema:issn 1342-1751
230 1437-7799
231 schema:name Clinical and Experimental Nephrology
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.01000373557.74 schema:affiliation grid-institutes:None
235 schema:familyName Ando
236 schema:givenName Minoru
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000373557.74
238 rdf:type schema:Person
239 sg:person.01167203046.28 schema:affiliation grid-institutes:grid.410818.4
240 schema:familyName Yanagisawa
241 schema:givenName Naoki
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167203046.28
243 rdf:type schema:Person
244 sg:person.01203072055.54 schema:affiliation grid-institutes:grid.410818.4
245 schema:familyName Nitta
246 schema:givenName Kosaku
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203072055.54
248 rdf:type schema:Person
249 sg:person.013411124341.34 schema:affiliation grid-institutes:grid.410818.4
250 schema:familyName Momoki
251 schema:givenName Kumiko
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013411124341.34
253 rdf:type schema:Person
254 sg:person.0721731021.30 schema:affiliation grid-institutes:grid.410818.4
255 schema:familyName Tsuchiya
256 schema:givenName Ken
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721731021.30
258 rdf:type schema:Person
259 sg:person.0731101030.51 schema:affiliation grid-institutes:grid.410818.4
260 schema:familyName Hara
261 schema:givenName Masaki
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731101030.51
263 rdf:type schema:Person
264 sg:person.0761361220.66 schema:affiliation grid-institutes:grid.415479.a
265 schema:familyName Ohta
266 schema:givenName Akihito
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761361220.66
268 rdf:type schema:Person
269 sg:pub.10.1038/bmt.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358194
270 https://doi.org/10.1038/bmt.2012.244
271 rdf:type schema:CreativeWork
272 sg:pub.10.1291/hypres.31.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036693970
273 https://doi.org/10.1291/hypres.31.433
274 rdf:type schema:CreativeWork
275 grid-institutes:None schema:alternateName Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan
276 schema:name Department of Medicine, Tokyo Metropolitan Fu-chu Medical and Welfare Center for the Disabled, 2-9-2, Musashidai, 183-8553, Fuchu, Tokyo, Japan
277 Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
278 rdf:type schema:Organization
279 grid-institutes:grid.410818.4 schema:alternateName Department IV of Internal Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
280 schema:name Department IV of Internal Medicine, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
281 Division of Infectious Diseases, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
282 Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
283 rdf:type schema:Organization
284 grid-institutes:grid.415479.a schema:alternateName Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
285 schema:name Division of Nephrology, Department of Medicine, Tokyo Metropolitan Komagome Hospital, Bunkyo-ku, Tokyo, Japan
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...