Quick and simple; psoas density measurement is an independent predictor of anastomotic leak and other complications after colorectal resection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

P. J. J. Herrod, H. Boyd-Carson, B. Doleman, J. Trotter, S. Schlichtemeier, G. Sathanapally, J. Somerville, J. P. Williams, J. N. Lund

ABSTRACT

BACKGROUND: Radiologically defined sarcopenia has been shown to predict negative outcomes after cancer surgery, however radiological assessment of sarcopenia often requires additional software and standardisation against anthropomorphic data. Measuring psoas density using hospital Picture Archiving and Communication Systems (PACS), universally available in the UK, may have advantages over methods requiring the use of additional specialist and often costly software. The aim of this study was to assess the association between radiologically defined sarcopenia measured by psoas density and postoperative outcome in patients having a colorectal cancer resection. METHODS: All patients having a resection for colorectal cancer, discussed by the colorectal multi-disciplinary team in one institution between 1/1/15 and 31/12/15, were retrospectively identified. Mean psoas density at the level of the L3 vertebra was analysed from preoperative computed tomography (CT) scans to define sarcopenia using the Picture Archiving and Communication Systems (PACS). Postoperative complications and mortality were recorded. RESULTS: One hundred and sixty-nine patients had a colorectal resection for cancer and 140 of these had a primary anastomosis. Ninety-day mortality and 1-year mortality were 1.1% and 7.1%, respectively. Eighteen (10.7%) patients suffered a Clavien-Dindo grade 3 or 4 complication of which 6 (33%) were anastomotic leaks. In the whole cohort, sarcopenia was associated with an increased risk of Clavien-Dindo grade 3 or 4 complications [adjusted OR 6.33 (1.65-24.23) p = 0.007]. In those who had an anastomosis, sarcopenia was associated with an increased risk of anastomotic leak [adjusted OR 14.37 (1.37-150.04) p = 0.026]. CONCLUSIONS: A quick and easy radiological assessment of sarcopenia by measuring psoas density on preoperative CT scan using software universally available in the UK is highly predictive of postoperative morbidity in colorectal cancer patients. More... »

PAGES

129-134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10151-019-1928-0

DOI

http://dx.doi.org/10.1007/s10151-019-1928-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112283002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30790102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Derby Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413619.8", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK", 
            "Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, DE22 3DT, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrod", 
        "givenName": "P. J. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyd-Carson", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doleman", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scarborough General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415318.a", 
          "name": [
            "Combined Gastroenterology Research Unit, Scarborough General Hospital, Scarborough, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trotter", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlichtemeier", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sathanapally", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somerville", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "J. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "J. N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/archsurg.2010.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009594495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12893-016-0161-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015308531", 
          "https://doi.org/10.1186/s12893-016-0161-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12893-016-0161-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015308531", 
          "https://doi.org/10.1186/s12893-016-0161-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcm.2016.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015497339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2008.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016777478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-4281-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020151524", 
          "https://doi.org/10.1245/s10434-014-4281-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000133083.54934.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024049438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000133083.54934.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024049438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000133083.54934.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024049438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2015.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025757295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13741-016-0052-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444075", 
          "https://doi.org/10.1186/s13741-016-0052-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13741-016-0052-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444075", 
          "https://doi.org/10.1186/s13741-016-0052-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2012.350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035025424", 
          "https://doi.org/10.1038/bjc.2012.350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(07)61602-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/apha.12224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037472325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amsu.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038756364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/codi.12665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043069867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.9893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047602123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2012.00260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.23862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050841371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-014-2785-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051546623", 
          "https://doi.org/10.1007/s00268-014-2785-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-3999-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517499", 
          "https://doi.org/10.1007/s00268-017-3999-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-017-3999-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517499", 
          "https://doi.org/10.1007/s00268-017-3999-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.j2224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085466350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.j2224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085466350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2017.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085583116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cjca.2017.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092233115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1308/rcsann.2017.0213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099896337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000002679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100668089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000002679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100668089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2017.35.15_suppl.tps10127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106849971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "BACKGROUND: Radiologically defined sarcopenia has been shown to predict negative outcomes after cancer surgery, however radiological assessment of sarcopenia often requires additional software and standardisation against anthropomorphic data. Measuring psoas density using hospital Picture Archiving and Communication Systems (PACS), universally available in the UK, may have advantages over methods requiring the use of additional specialist and often costly software. The aim of this study was to assess the association between radiologically defined sarcopenia measured by psoas density and postoperative outcome in patients having a colorectal cancer resection.\nMETHODS: All patients having a resection for colorectal cancer, discussed by the colorectal multi-disciplinary team in one institution between 1/1/15 and 31/12/15, were retrospectively identified. Mean psoas density at the level of the L3 vertebra was analysed from preoperative computed tomography (CT) scans to define sarcopenia\u00a0using\u00a0the Picture Archiving and Communication Systems (PACS). Postoperative complications and mortality were recorded.\nRESULTS: One hundred and sixty-nine patients had a colorectal resection for cancer and 140 of these had a primary anastomosis. Ninety-day mortality and 1-year mortality were 1.1% and 7.1%, respectively. Eighteen (10.7%) patients suffered a Clavien-Dindo grade 3 or 4 complication of which 6 (33%) were anastomotic leaks. In the whole cohort, sarcopenia was associated with an increased risk of Clavien-Dindo grade 3 or 4 complications [adjusted OR 6.33 (1.65-24.23) p\u2009=\u20090.007]. In those who had an anastomosis, sarcopenia was associated with an increased risk of anastomotic leak [adjusted OR 14.37 (1.37-150.04) p\u2009=\u20090.026].\nCONCLUSIONS: A quick and easy radiological assessment of sarcopenia by measuring psoas density on preoperative CT scan using software universally available in the UK\u00a0is highly predictive of postoperative morbidity in colorectal cancer patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10151-019-1928-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1116006", 
        "issn": [
          "1123-6337", 
          "1128-045X"
        ], 
        "name": "Techniques in Coloproctology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Quick and simple; psoas density measurement is an independent predictor of anastomotic leak and other complications after colorectal resection", 
    "pagination": "129-134", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21a183ad048b7989bd36fea348789dc8cbb5032467ed38a522f768826305d93e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30790102"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9613614"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10151-019-1928-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112283002"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10151-019-1928-0", 
      "https://app.dimensions.ai/details/publication/pub.1112283002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10151-019-1928-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10151-019-1928-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10151-019-1928-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10151-019-1928-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10151-019-1928-0'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10151-019-1928-0 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N08d842e3001943018a19e6c122ab8a89
4 schema:citation sg:pub.10.1007/s00268-014-2785-7
5 sg:pub.10.1007/s00268-017-3999-2
6 sg:pub.10.1038/bjc.2012.350
7 sg:pub.10.1186/s12893-016-0161-2
8 sg:pub.10.1186/s13741-016-0052-1
9 sg:pub.10.1245/s10434-014-4281-6
10 https://doi.org/10.1001/archsurg.2010.40
11 https://doi.org/10.1002/bjs.9893
12 https://doi.org/10.1002/jso.23862
13 https://doi.org/10.1016/j.amsu.2014.12.002
14 https://doi.org/10.1016/j.cjca.2017.10.009
15 https://doi.org/10.1016/j.jamcollsurg.2008.10.015
16 https://doi.org/10.1016/j.jcm.2016.02.012
17 https://doi.org/10.1016/j.jhep.2015.02.031
18 https://doi.org/10.1016/j.surg.2017.03.014
19 https://doi.org/10.1016/s0140-6736(07)61602-x
20 https://doi.org/10.1097/01.sla.0000133083.54934.ae
21 https://doi.org/10.1097/sla.0000000000002679
22 https://doi.org/10.1111/apha.12224
23 https://doi.org/10.1111/codi.12665
24 https://doi.org/10.1136/bmj.j2224
25 https://doi.org/10.1200/jco.2017.35.15_suppl.tps10127
26 https://doi.org/10.1308/rcsann.2017.0213
27 https://doi.org/10.3389/fphys.2012.00260
28 schema:datePublished 2019-02
29 schema:datePublishedReg 2019-02-01
30 schema:description BACKGROUND: Radiologically defined sarcopenia has been shown to predict negative outcomes after cancer surgery, however radiological assessment of sarcopenia often requires additional software and standardisation against anthropomorphic data. Measuring psoas density using hospital Picture Archiving and Communication Systems (PACS), universally available in the UK, may have advantages over methods requiring the use of additional specialist and often costly software. The aim of this study was to assess the association between radiologically defined sarcopenia measured by psoas density and postoperative outcome in patients having a colorectal cancer resection. METHODS: All patients having a resection for colorectal cancer, discussed by the colorectal multi-disciplinary team in one institution between 1/1/15 and 31/12/15, were retrospectively identified. Mean psoas density at the level of the L3 vertebra was analysed from preoperative computed tomography (CT) scans to define sarcopenia using the Picture Archiving and Communication Systems (PACS). Postoperative complications and mortality were recorded. RESULTS: One hundred and sixty-nine patients had a colorectal resection for cancer and 140 of these had a primary anastomosis. Ninety-day mortality and 1-year mortality were 1.1% and 7.1%, respectively. Eighteen (10.7%) patients suffered a Clavien-Dindo grade 3 or 4 complication of which 6 (33%) were anastomotic leaks. In the whole cohort, sarcopenia was associated with an increased risk of Clavien-Dindo grade 3 or 4 complications [adjusted OR 6.33 (1.65-24.23) p = 0.007]. In those who had an anastomosis, sarcopenia was associated with an increased risk of anastomotic leak [adjusted OR 14.37 (1.37-150.04) p = 0.026]. CONCLUSIONS: A quick and easy radiological assessment of sarcopenia by measuring psoas density on preoperative CT scan using software universally available in the UK is highly predictive of postoperative morbidity in colorectal cancer patients.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N52dfc652e15d4983ad07b0c7e1a8c3f7
35 Ncbcd4a9943d94369975e060ac7e0b19a
36 sg:journal.1116006
37 schema:name Quick and simple; psoas density measurement is an independent predictor of anastomotic leak and other complications after colorectal resection
38 schema:pagination 129-134
39 schema:productId N706608c0dac44cc9843628dab23a7619
40 N82a08016f8f7437790220a07be030c29
41 Na24adacfdfdb4ed18e4c80db15612018
42 Nc778928921064db0864d4f1c760c1b92
43 Nd141c8abf43f4c168d66ed845a09a053
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112283002
45 https://doi.org/10.1007/s10151-019-1928-0
46 schema:sdDatePublished 2019-04-11T13:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N74b5b681b8354c3b9095dfc23088c489
49 schema:url https://link.springer.com/10.1007%2Fs10151-019-1928-0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N089c0de9e340430b80a583d2e21428d1 rdf:first Na2f35ae796c048d09434e4dc18638434
54 rdf:rest Need5b38a36dc421995a1bd952e21d272
55 N08d842e3001943018a19e6c122ab8a89 rdf:first Nc5b9d2f53bfe4a609ca89fdf585c9ec3
56 rdf:rest N7db117c5341748479f4432b608476458
57 N14aba4a8aef840ad98df5775a70f685a rdf:first Na4c0fc0f03c74f919bd8f8e3e62479dd
58 rdf:rest N089c0de9e340430b80a583d2e21428d1
59 N1a55c911725740939cb6a5a6e4b73e3e rdf:first N56bc9fc558f14f3a87b151baa06a403f
60 rdf:rest rdf:nil
61 N26006162a4fd45aca927c82b72b3ce10 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
62 schema:familyName Schlichtemeier
63 schema:givenName S.
64 rdf:type schema:Person
65 N39b10974a7c74699a21c4f0ace1b3b1e schema:affiliation https://www.grid.ac/institutes/grid.4563.4
66 schema:familyName Boyd-Carson
67 schema:givenName H.
68 rdf:type schema:Person
69 N52dfc652e15d4983ad07b0c7e1a8c3f7 schema:volumeNumber 23
70 rdf:type schema:PublicationVolume
71 N56bc9fc558f14f3a87b151baa06a403f schema:affiliation https://www.grid.ac/institutes/grid.4563.4
72 schema:familyName Lund
73 schema:givenName J. N.
74 rdf:type schema:Person
75 N6ba6e4c68ca94ec3a79c8007b9d6e31b rdf:first N6f53d64025984d7dac2ce1abd3e8b2d8
76 rdf:rest N9867cbf3ef60451fab75539f05789069
77 N6f53d64025984d7dac2ce1abd3e8b2d8 schema:affiliation https://www.grid.ac/institutes/grid.415318.a
78 schema:familyName Trotter
79 schema:givenName J.
80 rdf:type schema:Person
81 N706608c0dac44cc9843628dab23a7619 schema:name doi
82 schema:value 10.1007/s10151-019-1928-0
83 rdf:type schema:PropertyValue
84 N74b5b681b8354c3b9095dfc23088c489 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N7db117c5341748479f4432b608476458 rdf:first N39b10974a7c74699a21c4f0ace1b3b1e
87 rdf:rest Ne8ab61b785a344cc97c54a011e3f1d5b
88 N82a08016f8f7437790220a07be030c29 schema:name pubmed_id
89 schema:value 30790102
90 rdf:type schema:PropertyValue
91 N9867cbf3ef60451fab75539f05789069 rdf:first N26006162a4fd45aca927c82b72b3ce10
92 rdf:rest N14aba4a8aef840ad98df5775a70f685a
93 N9bea6b6727884e04be1fe2ff3137925d schema:affiliation https://www.grid.ac/institutes/grid.4563.4
94 schema:familyName Doleman
95 schema:givenName B.
96 rdf:type schema:Person
97 Na24adacfdfdb4ed18e4c80db15612018 schema:name readcube_id
98 schema:value 21a183ad048b7989bd36fea348789dc8cbb5032467ed38a522f768826305d93e
99 rdf:type schema:PropertyValue
100 Na2f35ae796c048d09434e4dc18638434 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
101 schema:familyName Somerville
102 schema:givenName J.
103 rdf:type schema:Person
104 Na4c0fc0f03c74f919bd8f8e3e62479dd schema:affiliation https://www.grid.ac/institutes/grid.4563.4
105 schema:familyName Sathanapally
106 schema:givenName G.
107 rdf:type schema:Person
108 Nc5b9d2f53bfe4a609ca89fdf585c9ec3 schema:affiliation https://www.grid.ac/institutes/grid.413619.8
109 schema:familyName Herrod
110 schema:givenName P. J. J.
111 rdf:type schema:Person
112 Nc778928921064db0864d4f1c760c1b92 schema:name nlm_unique_id
113 schema:value 9613614
114 rdf:type schema:PropertyValue
115 Ncbcd4a9943d94369975e060ac7e0b19a schema:issueNumber 2
116 rdf:type schema:PublicationIssue
117 Nd141c8abf43f4c168d66ed845a09a053 schema:name dimensions_id
118 schema:value pub.1112283002
119 rdf:type schema:PropertyValue
120 Ne8ab61b785a344cc97c54a011e3f1d5b rdf:first N9bea6b6727884e04be1fe2ff3137925d
121 rdf:rest N6ba6e4c68ca94ec3a79c8007b9d6e31b
122 Ne987b5d04b214cd3a1315a3562da00c4 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
123 schema:familyName Williams
124 schema:givenName J. P.
125 rdf:type schema:Person
126 Need5b38a36dc421995a1bd952e21d272 rdf:first Ne987b5d04b214cd3a1315a3562da00c4
127 rdf:rest N1a55c911725740939cb6a5a6e4b73e3e
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
132 schema:name Oncology and Carcinogenesis
133 rdf:type schema:DefinedTerm
134 sg:journal.1116006 schema:issn 1123-6337
135 1128-045X
136 schema:name Techniques in Coloproctology
137 rdf:type schema:Periodical
138 sg:pub.10.1007/s00268-014-2785-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051546623
139 https://doi.org/10.1007/s00268-014-2785-7
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00268-017-3999-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517499
142 https://doi.org/10.1007/s00268-017-3999-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/bjc.2012.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025424
145 https://doi.org/10.1038/bjc.2012.350
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/s12893-016-0161-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015308531
148 https://doi.org/10.1186/s12893-016-0161-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/s13741-016-0052-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444075
151 https://doi.org/10.1186/s13741-016-0052-1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1245/s10434-014-4281-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020151524
154 https://doi.org/10.1245/s10434-014-4281-6
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1001/archsurg.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009594495
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/bjs.9893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047602123
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/jso.23862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050841371
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.amsu.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038756364
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cjca.2017.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092233115
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jamcollsurg.2008.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016777478
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jcm.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015497339
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jhep.2015.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025757295
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.surg.2017.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085583116
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0140-6736(07)61602-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200026
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1097/01.sla.0000133083.54934.ae schema:sameAs https://app.dimensions.ai/details/publication/pub.1024049438
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1097/sla.0000000000002679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100668089
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/apha.12224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037472325
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/codi.12665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069867
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1136/bmj.j2224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085466350
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1200/jco.2017.35.15_suppl.tps10127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106849971
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1308/rcsann.2017.0213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099896337
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3389/fphys.2012.00260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049077741
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.413619.8 schema:alternateName Royal Derby Hospital
193 schema:name Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK
194 Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, DE22 3DT, Derby, UK
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.415318.a schema:alternateName Scarborough General Hospital
197 schema:name Combined Gastroenterology Research Unit, Scarborough General Hospital, Scarborough, UK
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
200 schema:name Division of Medical Sciences and Graduate Entry Medicine, Department of Surgery, University of Nottingham, Derby, UK
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...