Exploring the drivers of wildlife population dynamics from insufficient data by Bayesian model averaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

Yutaka Osada, Takeo Kuriyama, Masahiko Asada, Hiroyuki Yokomizo, Tadashi Miyashita

ABSTRACT

A long-standing interest in ecology and wildlife management is to find drivers of wildlife population dynamics because it is crucial for implementing the effective wildlife management. Recent studies have demonstrated the usefulness of state-space modeling for this purpose, but we often confront the lack of the necessary time-series data. This is particularly common in wildlife management because of limited funds or early stage of data collection. In this study, we proposed a Bayesian model averaging technique in a state-space modeling framework for identifying the drivers of wildlife population dynamics from limited data. To exemplify the utility of Bayesian model averaging for wildlife management, we illustrate here the population dynamics of wild boars Sus scrofa in Chiba prefecture, central Japan. Despite the fact that our data are limited in both temporal and spatial resolution, Bayesian model averaging revealed the potential influence of bamboo forests and abandoned agricultural fields on wild boar population dynamics, and largely enhanced model predictability compared to the full model. Although Bayesian model averaging is not commonly used in ecology and wildlife management, our case study demonstrated that it may help to find influential drivers of wildlife population dynamics and develop a better management plan even from limited time-series data. More... »

PAGES

485-493

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10144-015-0498-x

DOI

http://dx.doi.org/10.1007/s10144-015-0498-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028052567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osada", 
        "givenName": "Yutaka", 
        "id": "sg:person.0716552070.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716552070.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuriyama", 
        "givenName": "Takeo", 
        "id": "sg:person.0666121301.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666121301.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ASADA Wildlife Management Company (AMAC, LLC), Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asada", 
        "givenName": "Masahiko", 
        "id": "sg:person.012614427073.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614427073.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies", 
          "id": "https://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "Center for Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokomizo", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.01223210725.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223210725.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyashita", 
        "givenName": "Tadashi", 
        "id": "sg:person.011657432335.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657432335.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10530-012-0229-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001313382", 
          "https://doi.org/10.1007/s10530-012-0229-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jwmg.556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001462182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9538-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006138136", 
          "https://doi.org/10.1007/s10980-010-9538-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9538-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006138136", 
          "https://doi.org/10.1007/s10980-010-9538-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.1998.6760887.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009623498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1523-1739.2007.00687.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010665284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-environ-033009-095548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010958545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-013-0282-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011221367", 
          "https://doi.org/10.1007/s13595-013-0282-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0706.2011.20085.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013039468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.1995.09061357.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013087631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1205106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014628237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416389a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015998984", 
          "https://doi.org/10.1038/416389a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416389a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015998984", 
          "https://doi.org/10.1038/416389a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2003)084[1382:hbmfpt]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017833128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2005.00792.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020875241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2005.00792.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020875241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023803791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2009.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033423786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.35.021103.105725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033562629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1464793102006061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034492821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prevetmed.2008.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034638622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-007-0156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796821", 
          "https://doi.org/10.1007/s10344-007-0156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-007-0156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796821", 
          "https://doi.org/10.1007/s10344-007-0156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10344-007-0156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035796821", 
          "https://doi.org/10.1007/s10344-007-0156-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2009.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036083362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/08-1843.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036484892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2005.01094.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040426075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2907.2003.00010.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040649293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044368329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1523-1739.2003.00614.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052060800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2013.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053064629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2508/chikusan.72.7_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053558262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba117a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1644/12-mamm-a-038.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068177414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "A long-standing interest in ecology and wildlife management is to find drivers of wildlife population dynamics because it is crucial for implementing the effective wildlife management. Recent studies have demonstrated the usefulness of state-space modeling for this purpose, but we often confront the lack of the necessary time-series data. This is particularly common in wildlife management because of limited funds or early stage of data collection. In this study, we proposed a Bayesian model averaging technique in a state-space modeling framework for identifying the drivers of wildlife population dynamics from limited data. To exemplify the utility of Bayesian model averaging for wildlife management, we illustrate here the population dynamics of wild boars Sus scrofa in Chiba prefecture, central Japan. Despite the fact that our data are limited in both temporal and spatial resolution, Bayesian model averaging revealed the potential influence of bamboo forests and abandoned agricultural fields on wild boar population dynamics, and largely enhanced model predictability compared to the full model. Although Bayesian model averaging is not commonly used in ecology and wildlife management, our case study demonstrated that it may help to find influential drivers of wildlife population dynamics and develop a better management plan even from limited time-series data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10144-015-0498-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6109032", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5548026", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297572", 
        "issn": [
          "1438-3896", 
          "1437-5613"
        ], 
        "name": "Population Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Exploring the drivers of wildlife population dynamics from insufficient data by Bayesian model averaging", 
    "pagination": "485-493", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a2b5110dd114a5b76abac5608848480924a7b7788ace865745439c6911d139"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10144-015-0498-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028052567"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10144-015-0498-x", 
      "https://app.dimensions.ai/details/publication/pub.1028052567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10144-015-0498-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10144-015-0498-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10144-015-0498-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10144-015-0498-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10144-015-0498-x'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10144-015-0498-x schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N122d34099c8749b595b23b73034442dc
4 schema:citation sg:pub.10.1007/s10344-007-0156-5
5 sg:pub.10.1007/s10530-012-0229-6
6 sg:pub.10.1007/s10980-010-9538-2
7 sg:pub.10.1007/s13595-013-0282-z
8 sg:pub.10.1038/416389a
9 https://doi.org/10.1002/jwmg.556
10 https://doi.org/10.1016/j.agee.2013.01.015
11 https://doi.org/10.1016/j.ecolmodel.2009.02.013
12 https://doi.org/10.1016/j.prevetmed.2008.03.012
13 https://doi.org/10.1016/j.tree.2009.05.012
14 https://doi.org/10.1016/j.tree.2009.12.003
15 https://doi.org/10.1017/s1464793102006061
16 https://doi.org/10.1046/j.1365-2656.1998.6760887.x
17 https://doi.org/10.1046/j.1365-2907.2003.00010.x
18 https://doi.org/10.1046/j.1523-1739.1995.09061357.x
19 https://doi.org/10.1111/j.1365-2664.2005.01094.x
20 https://doi.org/10.1111/j.1461-0248.2005.00792.x
21 https://doi.org/10.1111/j.1523-1739.2003.00614.x
22 https://doi.org/10.1111/j.1523-1739.2007.00687.x
23 https://doi.org/10.1111/j.1600-0706.2011.20085.x
24 https://doi.org/10.1126/science.1205106
25 https://doi.org/10.1146/annurev-environ-033009-095548
26 https://doi.org/10.1146/annurev.ecolsys.35.021103.105725
27 https://doi.org/10.1214/06-ba117a
28 https://doi.org/10.1371/journal.pone.0079978
29 https://doi.org/10.1644/12-mamm-a-038.1
30 https://doi.org/10.1890/0012-9658(2003)084[1382:hbmfpt]2.0.co;2
31 https://doi.org/10.1890/04-0609
32 https://doi.org/10.1890/08-1843.1
33 https://doi.org/10.2508/chikusan.72.7_49
34 schema:datePublished 2015-07
35 schema:datePublishedReg 2015-07-01
36 schema:description A long-standing interest in ecology and wildlife management is to find drivers of wildlife population dynamics because it is crucial for implementing the effective wildlife management. Recent studies have demonstrated the usefulness of state-space modeling for this purpose, but we often confront the lack of the necessary time-series data. This is particularly common in wildlife management because of limited funds or early stage of data collection. In this study, we proposed a Bayesian model averaging technique in a state-space modeling framework for identifying the drivers of wildlife population dynamics from limited data. To exemplify the utility of Bayesian model averaging for wildlife management, we illustrate here the population dynamics of wild boars Sus scrofa in Chiba prefecture, central Japan. Despite the fact that our data are limited in both temporal and spatial resolution, Bayesian model averaging revealed the potential influence of bamboo forests and abandoned agricultural fields on wild boar population dynamics, and largely enhanced model predictability compared to the full model. Although Bayesian model averaging is not commonly used in ecology and wildlife management, our case study demonstrated that it may help to find influential drivers of wildlife population dynamics and develop a better management plan even from limited time-series data.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N48eb4379627f44b1ad56d9528ee9b110
41 Nbe552d0b8e4f41d4a42274687d35c20d
42 sg:journal.1297572
43 schema:name Exploring the drivers of wildlife population dynamics from insufficient data by Bayesian model averaging
44 schema:pagination 485-493
45 schema:productId N156ae90fef464d3791dc53870fecd950
46 N8e8f34909e124085b99d8ffe7ce82256
47 Nf7f6aa25406b4db09cafa9402fbbe29b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028052567
49 https://doi.org/10.1007/s10144-015-0498-x
50 schema:sdDatePublished 2019-04-10T23:28
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N32372df02212484b93ee9595095bfc4d
53 schema:url http://link.springer.com/10.1007%2Fs10144-015-0498-x
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N122d34099c8749b595b23b73034442dc rdf:first sg:person.0716552070.99
58 rdf:rest N20f315ca0f6b4eeca197df24d75aae8f
59 N156ae90fef464d3791dc53870fecd950 schema:name dimensions_id
60 schema:value pub.1028052567
61 rdf:type schema:PropertyValue
62 N17dba45314b74126805b63a6775c3df2 rdf:first sg:person.01223210725.68
63 rdf:rest Ndad08a40d56b4d68ab6b809ac523dfe9
64 N20f315ca0f6b4eeca197df24d75aae8f rdf:first sg:person.0666121301.82
65 rdf:rest Nc79d55c1c54749d0b593394a6247633c
66 N32372df02212484b93ee9595095bfc4d schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N48eb4379627f44b1ad56d9528ee9b110 schema:issueNumber 3
69 rdf:type schema:PublicationIssue
70 N8e8f34909e124085b99d8ffe7ce82256 schema:name doi
71 schema:value 10.1007/s10144-015-0498-x
72 rdf:type schema:PropertyValue
73 Nbe552d0b8e4f41d4a42274687d35c20d schema:volumeNumber 57
74 rdf:type schema:PublicationVolume
75 Nc00f7fce9b0047e889d501df1602a4d0 schema:name ASADA Wildlife Management Company (AMAC, LLC), Chiba, Japan
76 rdf:type schema:Organization
77 Nc79d55c1c54749d0b593394a6247633c rdf:first sg:person.012614427073.61
78 rdf:rest N17dba45314b74126805b63a6775c3df2
79 Ndad08a40d56b4d68ab6b809ac523dfe9 rdf:first sg:person.011657432335.16
80 rdf:rest rdf:nil
81 Nf7f6aa25406b4db09cafa9402fbbe29b schema:name readcube_id
82 schema:value 85a2b5110dd114a5b76abac5608848480924a7b7788ace865745439c6911d139
83 rdf:type schema:PropertyValue
84 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
85 schema:name Environmental Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
88 schema:name Environmental Science and Management
89 rdf:type schema:DefinedTerm
90 sg:grant.5548026 http://pending.schema.org/fundedItem sg:pub.10.1007/s10144-015-0498-x
91 rdf:type schema:MonetaryGrant
92 sg:grant.6109032 http://pending.schema.org/fundedItem sg:pub.10.1007/s10144-015-0498-x
93 rdf:type schema:MonetaryGrant
94 sg:journal.1297572 schema:issn 1437-5613
95 1438-3896
96 schema:name Population Ecology
97 rdf:type schema:Periodical
98 sg:person.011657432335.16 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
99 schema:familyName Miyashita
100 schema:givenName Tadashi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657432335.16
102 rdf:type schema:Person
103 sg:person.01223210725.68 schema:affiliation https://www.grid.ac/institutes/grid.140139.e
104 schema:familyName Yokomizo
105 schema:givenName Hiroyuki
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223210725.68
107 rdf:type schema:Person
108 sg:person.012614427073.61 schema:affiliation Nc00f7fce9b0047e889d501df1602a4d0
109 schema:familyName Asada
110 schema:givenName Masahiko
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012614427073.61
112 rdf:type schema:Person
113 sg:person.0666121301.82 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
114 schema:familyName Kuriyama
115 schema:givenName Takeo
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666121301.82
117 rdf:type schema:Person
118 sg:person.0716552070.99 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
119 schema:familyName Osada
120 schema:givenName Yutaka
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716552070.99
122 rdf:type schema:Person
123 sg:pub.10.1007/s10344-007-0156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035796821
124 https://doi.org/10.1007/s10344-007-0156-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10530-012-0229-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001313382
127 https://doi.org/10.1007/s10530-012-0229-6
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10980-010-9538-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006138136
130 https://doi.org/10.1007/s10980-010-9538-2
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s13595-013-0282-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011221367
133 https://doi.org/10.1007/s13595-013-0282-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/416389a schema:sameAs https://app.dimensions.ai/details/publication/pub.1015998984
136 https://doi.org/10.1038/416389a
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/jwmg.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001462182
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.agee.2013.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053064629
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ecolmodel.2009.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033423786
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.prevetmed.2008.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034638622
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.tree.2009.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036083362
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.tree.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023803791
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1017/s1464793102006061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034492821
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1046/j.1365-2656.1998.6760887.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009623498
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1046/j.1365-2907.2003.00010.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040649293
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1046/j.1523-1739.1995.09061357.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013087631
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1365-2664.2005.01094.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040426075
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1461-0248.2005.00792.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020875241
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1523-1739.2003.00614.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052060800
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1523-1739.2007.00687.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010665284
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1600-0706.2011.20085.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013039468
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1205106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014628237
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1146/annurev-environ-033009-095548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010958545
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1146/annurev.ecolsys.35.021103.105725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033562629
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1214/06-ba117a schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389480
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1371/journal.pone.0079978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044368329
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1644/12-mamm-a-038.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068177414
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1890/0012-9658(2003)084[1382:hbmfpt]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017833128
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1890/04-0609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905138
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1890/08-1843.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036484892
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2508/chikusan.72.7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053558262
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.140139.e schema:alternateName National Institute for Environmental Studies
189 schema:name Center for Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
192 schema:name Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...