Role of biofilms in neurosurgical device-related infections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-07-01

AUTHORS

Ernest E. Braxton, Garth D. Ehrlich, Luanne Hall-Stoodley, Paul Stoodley, Rick Veeh, Christoph Fux, Fen Z. Hu, Matthew Quigley, J. Christopher Post

ABSTRACT

Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention. More... »

PAGES

249-255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10143-005-0403-8

DOI

http://dx.doi.org/10.1007/s10143-005-0403-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030851502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15991051


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofilms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross Infection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurosurgical Procedures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prosthesis-Related Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgical Equipment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgical Flaps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventriculoperitoneal Shunt", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.413621.3", 
          "name": [
            "Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braxton", 
        "givenName": "Ernest E.", 
        "id": "sg:person.0675757175.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675757175.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Immunology, Drexel University College of Medicine, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA", 
            "Department of Microbiology and Immunology, Drexel University College of Medicine, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehrlich", 
        "givenName": "Garth D.", 
        "id": "sg:person.01324252605.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324252605.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall-Stoodley", 
        "givenName": "Luanne", 
        "id": "sg:person.0607041661.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607041661.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoodley", 
        "givenName": "Paul", 
        "id": "sg:person.01316722264.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veeh", 
        "givenName": "Rick", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA", 
          "id": "http://www.grid.ac/institutes/grid.41891.35", 
          "name": [
            "Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fux", 
        "givenName": "Christoph", 
        "id": "sg:person.016157170137.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157170137.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Fen Z.", 
        "id": "sg:person.010625263442.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625263442.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.413621.3", 
          "name": [
            "Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quigley", 
        "givenName": "Matthew", 
        "id": "sg:person.015542117302.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015542117302.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "J. Christopher", 
        "id": "sg:person.01055120221.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055120221.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35015063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035285275", 
          "https://doi.org/10.1038/35015063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039651347", 
          "https://doi.org/10.1038/nrmicro821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00450610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028629788", 
          "https://doi.org/10.1007/bf00450610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-004-0262-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012700222", 
          "https://doi.org/10.1007/s00701-004-0262-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033810008", 
          "https://doi.org/10.1186/1471-2180-2-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02013600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023273417", 
          "https://doi.org/10.1007/bf02013600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0893-133x(01)00271-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025165719", 
          "https://doi.org/10.1016/s0893-133x(01)00271-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01405759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004478692", 
          "https://doi.org/10.1007/bf01405759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0178-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037982810", 
          "https://doi.org/10.1038/scientificamerican0178-86"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-07-01", 
    "datePublishedReg": "2005-07-01", 
    "description": "Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10143-005-0403-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1090096", 
        "issn": [
          "0344-5607", 
          "1437-2320"
        ], 
        "name": "Neurosurgical Review", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "bacterial biofilms", 
      "bacterial phenotypes", 
      "unique gene expression patterns", 
      "biofilm-associated chronic infections", 
      "free-swimming bacteria", 
      "gene expression patterns", 
      "concept of biofilms", 
      "distinct bacterial phenotypes", 
      "multicellular organisms", 
      "eukaryotic life", 
      "role of biofilms", 
      "intercellular signaling", 
      "quorum sensing", 
      "nutrient availability", 
      "expression patterns", 
      "bacterial cells", 
      "sessile bacteria", 
      "individual bacteria", 
      "planktonic bacteria", 
      "extracellular matrix", 
      "host defense mechanisms", 
      "biofilms", 
      "bacteria", 
      "defense mechanisms", 
      "biofilm infections", 
      "such diversity", 
      "phenotype", 
      "device-related infections", 
      "free floating", 
      "basic research", 
      "signaling", 
      "traditional pharmaceutical therapies", 
      "organisms", 
      "diversity", 
      "vast majority", 
      "cells", 
      "microenvironment", 
      "survival advantage", 
      "infection", 
      "mechanism", 
      "role", 
      "availability", 
      "chronic infection", 
      "transport", 
      "patterns", 
      "prerequisite", 
      "physical architecture", 
      "waste transport", 
      "structure", 
      "majority", 
      "number", 
      "pharmaceutical therapy", 
      "strategies", 
      "complex systems", 
      "matrix", 
      "floating", 
      "sensing", 
      "architecture", 
      "system", 
      "treatment", 
      "world", 
      "whole", 
      "paradigm", 
      "research", 
      "neurosurgical devices", 
      "advantages", 
      "life", 
      "clinical world", 
      "therapy", 
      "prevention", 
      "concept", 
      "patients", 
      "most practitioners", 
      "devices", 
      "practitioners", 
      "concomitant number", 
      "neurosurgical device-related infections", 
      "complex surface-attached structures", 
      "surface-attached structures", 
      "extruded extracellular matrix", 
      "complex organizational features endow biofilms", 
      "organizational features endow biofilms", 
      "features endow biofilms", 
      "endow biofilms", 
      "numerous microenvironments", 
      "enormous survival advantage", 
      "individual component bacterial cells", 
      "component bacterial cells"
    ], 
    "name": "Role of biofilms in neurosurgical device-related infections", 
    "pagination": "249-255", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030851502"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10143-005-0403-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15991051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10143-005-0403-8", 
      "https://app.dimensions.ai/details/publication/pub.1030851502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_397.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10143-005-0403-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10143-005-0403-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10143-005-0403-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10143-005-0403-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10143-005-0403-8'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      22 PREDICATES      132 URIs      114 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10143-005-0403-8 schema:about N0badb480d8d74714951958c02b57bef3
2 N19a27126eefb42c8996b90198513571d
3 N4491b0f9b0e04008bb78f65735974747
4 N6f32a72bb128439aa826379db2ca7fcf
5 Na071edcaa9d84daa8a4076f9567012c1
6 Nded79e4c338d4bde95bfdadceb1b2ea7
7 Nf2ae8f94eaab4569be9062d4e20b64c8
8 Nf9d736327ec049f19b80b80892407fad
9 anzsrc-for:11
10 anzsrc-for:1103
11 anzsrc-for:1109
12 schema:author Nd925d4bbcf3f4166980d104ad262c925
13 schema:citation sg:pub.10.1007/bf00450610
14 sg:pub.10.1007/bf01405759
15 sg:pub.10.1007/bf02013600
16 sg:pub.10.1007/s00701-004-0262-z
17 sg:pub.10.1016/s0893-133x(01)00271-8
18 sg:pub.10.1038/35015063
19 sg:pub.10.1038/nrmicro821
20 sg:pub.10.1038/scientificamerican0178-86
21 sg:pub.10.1186/1471-2180-2-7
22 schema:datePublished 2005-07-01
23 schema:datePublishedReg 2005-07-01
24 schema:description Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N99976f6187574ec0a54e9610b04f763c
29 Naf0c3c9204a1451987181fd4bccee53a
30 sg:journal.1090096
31 schema:keywords advantages
32 architecture
33 availability
34 bacteria
35 bacterial biofilms
36 bacterial cells
37 bacterial phenotypes
38 basic research
39 biofilm infections
40 biofilm-associated chronic infections
41 biofilms
42 cells
43 chronic infection
44 clinical world
45 complex organizational features endow biofilms
46 complex surface-attached structures
47 complex systems
48 component bacterial cells
49 concept
50 concept of biofilms
51 concomitant number
52 defense mechanisms
53 device-related infections
54 devices
55 distinct bacterial phenotypes
56 diversity
57 endow biofilms
58 enormous survival advantage
59 eukaryotic life
60 expression patterns
61 extracellular matrix
62 extruded extracellular matrix
63 features endow biofilms
64 floating
65 free floating
66 free-swimming bacteria
67 gene expression patterns
68 host defense mechanisms
69 individual bacteria
70 individual component bacterial cells
71 infection
72 intercellular signaling
73 life
74 majority
75 matrix
76 mechanism
77 microenvironment
78 most practitioners
79 multicellular organisms
80 neurosurgical device-related infections
81 neurosurgical devices
82 number
83 numerous microenvironments
84 nutrient availability
85 organisms
86 organizational features endow biofilms
87 paradigm
88 patients
89 patterns
90 pharmaceutical therapy
91 phenotype
92 physical architecture
93 planktonic bacteria
94 practitioners
95 prerequisite
96 prevention
97 quorum sensing
98 research
99 role
100 role of biofilms
101 sensing
102 sessile bacteria
103 signaling
104 strategies
105 structure
106 such diversity
107 surface-attached structures
108 survival advantage
109 system
110 therapy
111 traditional pharmaceutical therapies
112 transport
113 treatment
114 unique gene expression patterns
115 vast majority
116 waste transport
117 whole
118 world
119 schema:name Role of biofilms in neurosurgical device-related infections
120 schema:pagination 249-255
121 schema:productId N01eddf40f15a4a7288fb1de00ed38033
122 N6f634c51a9004907bd1ba784d0749101
123 Nfcd4f9645f1f4dc0a8e5c7448d070c27
124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030851502
125 https://doi.org/10.1007/s10143-005-0403-8
126 schema:sdDatePublished 2021-11-01T18:07
127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
128 schema:sdPublisher N6f9984ec8a50443aa7d572bc62f1d782
129 schema:url https://doi.org/10.1007/s10143-005-0403-8
130 sgo:license sg:explorer/license/
131 sgo:sdDataset articles
132 rdf:type schema:ScholarlyArticle
133 N01eddf40f15a4a7288fb1de00ed38033 schema:name pubmed_id
134 schema:value 15991051
135 rdf:type schema:PropertyValue
136 N07982027d3364c9b86c2f93524e0452d rdf:first sg:person.0607041661.06
137 rdf:rest Neb3dba3622084080b9158dfbc9872f7e
138 N0badb480d8d74714951958c02b57bef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Ventriculoperitoneal Shunt
140 rdf:type schema:DefinedTerm
141 N19a27126eefb42c8996b90198513571d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Neurosurgical Procedures
143 rdf:type schema:DefinedTerm
144 N215658aeb1364aaab81f0cc775cd186f rdf:first sg:person.015542117302.21
145 rdf:rest Ncd4e5ba3bcb145eba5bbc2f89babb58a
146 N332c9b900d00439093c59453087e4bfc schema:affiliation grid-institutes:grid.41891.35
147 schema:familyName Veeh
148 schema:givenName Rick
149 rdf:type schema:Person
150 N4491b0f9b0e04008bb78f65735974747 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Prosthesis-Related Infections
152 rdf:type schema:DefinedTerm
153 N6f32a72bb128439aa826379db2ca7fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Surgical Flaps
155 rdf:type schema:DefinedTerm
156 N6f634c51a9004907bd1ba784d0749101 schema:name dimensions_id
157 schema:value pub.1030851502
158 rdf:type schema:PropertyValue
159 N6f9984ec8a50443aa7d572bc62f1d782 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 N7878b8c0c8a942ddad2d9691af151209 rdf:first N332c9b900d00439093c59453087e4bfc
162 rdf:rest Ne0ffbd87fddc44bcaf7245751759ee51
163 N99976f6187574ec0a54e9610b04f763c schema:volumeNumber 28
164 rdf:type schema:PublicationVolume
165 Na071edcaa9d84daa8a4076f9567012c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Cross Infection
167 rdf:type schema:DefinedTerm
168 Naf0c3c9204a1451987181fd4bccee53a schema:issueNumber 4
169 rdf:type schema:PublicationIssue
170 Nbaa5e158aa4043e28d2852b1807197dc rdf:first sg:person.01324252605.57
171 rdf:rest N07982027d3364c9b86c2f93524e0452d
172 Ncd4e5ba3bcb145eba5bbc2f89babb58a rdf:first sg:person.01055120221.02
173 rdf:rest rdf:nil
174 Nd925d4bbcf3f4166980d104ad262c925 rdf:first sg:person.0675757175.99
175 rdf:rest Nbaa5e158aa4043e28d2852b1807197dc
176 Nded79e4c338d4bde95bfdadceb1b2ea7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Humans
178 rdf:type schema:DefinedTerm
179 Ne0ffbd87fddc44bcaf7245751759ee51 rdf:first sg:person.016157170137.31
180 rdf:rest Nfe6796bf3a204c12989156cfdbd715a6
181 Neb3dba3622084080b9158dfbc9872f7e rdf:first sg:person.01316722264.07
182 rdf:rest N7878b8c0c8a942ddad2d9691af151209
183 Nf2ae8f94eaab4569be9062d4e20b64c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Biofilms
185 rdf:type schema:DefinedTerm
186 Nf9d736327ec049f19b80b80892407fad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Surgical Equipment
188 rdf:type schema:DefinedTerm
189 Nfcd4f9645f1f4dc0a8e5c7448d070c27 schema:name doi
190 schema:value 10.1007/s10143-005-0403-8
191 rdf:type schema:PropertyValue
192 Nfe6796bf3a204c12989156cfdbd715a6 rdf:first sg:person.010625263442.13
193 rdf:rest N215658aeb1364aaab81f0cc775cd186f
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
198 schema:name Clinical Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
201 schema:name Neurosciences
202 rdf:type schema:DefinedTerm
203 sg:journal.1090096 schema:issn 0344-5607
204 1437-2320
205 schema:name Neurosurgical Review
206 schema:publisher Springer Nature
207 rdf:type schema:Periodical
208 sg:person.01055120221.02 schema:affiliation grid-institutes:grid.280673.8
209 schema:familyName Post
210 schema:givenName J. Christopher
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055120221.02
212 rdf:type schema:Person
213 sg:person.010625263442.13 schema:affiliation grid-institutes:grid.280673.8
214 schema:familyName Hu
215 schema:givenName Fen Z.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625263442.13
217 rdf:type schema:Person
218 sg:person.01316722264.07 schema:affiliation grid-institutes:grid.280673.8
219 schema:familyName Stoodley
220 schema:givenName Paul
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07
222 rdf:type schema:Person
223 sg:person.01324252605.57 schema:affiliation grid-institutes:grid.166341.7
224 schema:familyName Ehrlich
225 schema:givenName Garth D.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324252605.57
227 rdf:type schema:Person
228 sg:person.015542117302.21 schema:affiliation grid-institutes:grid.413621.3
229 schema:familyName Quigley
230 schema:givenName Matthew
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015542117302.21
232 rdf:type schema:Person
233 sg:person.016157170137.31 schema:affiliation grid-institutes:grid.41891.35
234 schema:familyName Fux
235 schema:givenName Christoph
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157170137.31
237 rdf:type schema:Person
238 sg:person.0607041661.06 schema:affiliation grid-institutes:grid.280673.8
239 schema:familyName Hall-Stoodley
240 schema:givenName Luanne
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607041661.06
242 rdf:type schema:Person
243 sg:person.0675757175.99 schema:affiliation grid-institutes:grid.413621.3
244 schema:familyName Braxton
245 schema:givenName Ernest E.
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675757175.99
247 rdf:type schema:Person
248 sg:pub.10.1007/bf00450610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028629788
249 https://doi.org/10.1007/bf00450610
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/bf01405759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004478692
252 https://doi.org/10.1007/bf01405759
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf02013600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273417
255 https://doi.org/10.1007/bf02013600
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/s00701-004-0262-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012700222
258 https://doi.org/10.1007/s00701-004-0262-z
259 rdf:type schema:CreativeWork
260 sg:pub.10.1016/s0893-133x(01)00271-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025165719
261 https://doi.org/10.1016/s0893-133x(01)00271-8
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/35015063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285275
264 https://doi.org/10.1038/35015063
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nrmicro821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039651347
267 https://doi.org/10.1038/nrmicro821
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/scientificamerican0178-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037982810
270 https://doi.org/10.1038/scientificamerican0178-86
271 rdf:type schema:CreativeWork
272 sg:pub.10.1186/1471-2180-2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033810008
273 https://doi.org/10.1186/1471-2180-2-7
274 rdf:type schema:CreativeWork
275 grid-institutes:grid.166341.7 schema:alternateName Department of Microbiology and Immunology, Drexel University College of Medicine, Pittsburgh, PA, USA
276 schema:name Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA
277 Department of Microbiology and Immunology, Drexel University College of Medicine, Pittsburgh, PA, USA
278 rdf:type schema:Organization
279 grid-institutes:grid.280673.8 schema:alternateName Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA
280 schema:name Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 E. North Ave., 15212, Pittsburgh, PA, USA
281 rdf:type schema:Organization
282 grid-institutes:grid.413621.3 schema:alternateName Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
283 schema:name Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
284 rdf:type schema:Organization
285 grid-institutes:grid.41891.35 schema:alternateName Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
286 schema:name Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...