Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-20

AUTHORS

Aysenur Soyturk Patat, Fatima Sen, Behic Selman Erdogdu, Ali Tevfik Uncu, Ayse Ozgur Uncu

ABSTRACT

Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as “transcription factor coding.” Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family. More... »

PAGES

879-889

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4

DOI

http://dx.doi.org/10.1007/s10142-022-00866-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148034707

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35596045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Transposable Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lepidium sativum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patat", 
        "givenName": "Aysenur Soyturk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen", 
        "givenName": "Fatima", 
        "id": "sg:person.011521452761.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521452761.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdogdu", 
        "givenName": "Behic Selman", 
        "id": "sg:person.011405764140.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405764140.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uncu", 
        "givenName": "Ali Tevfik", 
        "id": "sg:person.01313506406.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313506406.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uncu", 
        "givenName": "Ayse Ozgur", 
        "id": "sg:person.01347175521.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347175521.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11356-017-8951-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519549", 
          "https://doi.org/10.1007/s11356-017-8951-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41592-020-01056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135019727", 
          "https://doi.org/10.1038/s41592-020-01056-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12298-018-0622-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110065426", 
          "https://doi.org/10.1007/s12298-018-0622-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41597-020-00743-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132669585", 
          "https://doi.org/10.1038/s41597-020-00743-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep18919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048568617", 
          "https://doi.org/10.1038/srep18919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41587-019-0217-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120285368", 
          "https://doi.org/10.1038/s41587-019-0217-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1584-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249960", 
          "https://doi.org/10.1186/s12859-017-1584-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941568", 
          "https://doi.org/10.1038/nrg3374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11240-019-01596-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112950027", 
          "https://doi.org/10.1007/s11240-019-01596-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-021-83113-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135369289", 
          "https://doi.org/10.1038/s41598-021-83113-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-014-0423-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028290941", 
          "https://doi.org/10.1186/s12859-014-0423-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-20", 
    "datePublishedReg": "2022-05-20", 
    "description": "Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5\u00a0Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as \u201ctranscription factor coding.\u201d Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10142-022-00866-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022614", 
        "issn": [
          "1438-793X", 
          "1438-7948"
        ], 
        "name": "Functional & Integrative Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "gene content", 
      "genomics-assisted crop improvement", 
      "candidate disease resistance genes", 
      "genomic research", 
      "disease resistance genes", 
      "protein coding genes", 
      "draft genome assembly", 
      "genome evolution studies", 
      "extensive genomic research", 
      "microsatellite content", 
      "chloroplast genome", 
      "genome size", 
      "coding genes", 
      "gene structure", 
      "crop improvement", 
      "putative genes", 
      "garden cress", 
      "genome assembly", 
      "gene domain", 
      "transposable elements", 
      "draft genome", 
      "locus identification", 
      "genomic sequences", 
      "Brassicaceae crops", 
      "largest genus", 
      "sequencing technologies", 
      "Brassicaceae family", 
      "genome", 
      "resistance genes", 
      "genes", 
      "evolution studies", 
      "DNA analysis", 
      "genus", 
      "cress", 
      "medicinal plants", 
      "orthologs", 
      "assembly", 
      "Brassicaceae", 
      "heavy metals", 
      "plants", 
      "protein", 
      "identification", 
      "crops", 
      "novo", 
      "healthy vegetables", 
      "Lepidium", 
      "sequence", 
      "characterization", 
      "family", 
      "MB", 
      "domain", 
      "content", 
      "present work", 
      "vegetables", 
      "structure", 
      "addition", 
      "analysis", 
      "elements", 
      "size", 
      "study", 
      "data", 
      "total", 
      "research", 
      "work", 
      "focus", 
      "foundation", 
      "metals", 
      "technology", 
      "coding", 
      "construction", 
      "improvement", 
      "regression", 
      "machine", 
      "performing", 
      "different machine", 
      "performance", 
      "algorithm", 
      "logistic regression"
    ], 
    "name": "Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.)", 
    "pagination": "879-889", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148034707"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10142-022-00866-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35596045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10142-022-00866-4", 
      "https://app.dimensions.ai/details/publication/pub.1148034707"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10142-022-00866-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      119 URIs      100 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10142-022-00866-4 schema:about N30a0b64b54c049d28c9a85d4813fa1e2
2 N71676185047744779a3778b503b0f0e7
3 N7a45ee630dda435fb47813bc955fd9f3
4 Nd37c8da9987d411facab1197f52cf312
5 Nda6f09b5e4f34285a6a11613f0e3ddca
6 anzsrc-for:06
7 anzsrc-for:0604
8 schema:author N3347a8f3fbb24d06bb3dbca3937f51de
9 schema:citation sg:pub.10.1007/s11240-019-01596-5
10 sg:pub.10.1007/s11356-017-8951-3
11 sg:pub.10.1007/s12298-018-0622-4
12 sg:pub.10.1038/nrg3374
13 sg:pub.10.1038/s41587-019-0217-9
14 sg:pub.10.1038/s41592-020-01056-5
15 sg:pub.10.1038/s41597-020-00743-4
16 sg:pub.10.1038/s41598-021-83113-3
17 sg:pub.10.1038/srep18919
18 sg:pub.10.1186/s12859-014-0423-x
19 sg:pub.10.1186/s12859-017-1584-1
20 schema:datePublished 2022-05-20
21 schema:datePublishedReg 2022-05-20
22 schema:description Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as “transcription factor coding.” Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N02d8b134e3224f2d8119b72c743d7b42
26 N5efa72da167c42a5821ca6f22864ae17
27 sg:journal.1022614
28 schema:keywords Brassicaceae
29 Brassicaceae crops
30 Brassicaceae family
31 DNA analysis
32 Lepidium
33 MB
34 addition
35 algorithm
36 analysis
37 assembly
38 candidate disease resistance genes
39 characterization
40 chloroplast genome
41 coding
42 coding genes
43 construction
44 content
45 cress
46 crop improvement
47 crops
48 data
49 different machine
50 disease resistance genes
51 domain
52 draft genome
53 draft genome assembly
54 elements
55 evolution studies
56 extensive genomic research
57 family
58 focus
59 foundation
60 garden cress
61 gene content
62 gene domain
63 gene structure
64 genes
65 genome
66 genome assembly
67 genome evolution studies
68 genome size
69 genomic research
70 genomic sequences
71 genomics-assisted crop improvement
72 genus
73 healthy vegetables
74 heavy metals
75 identification
76 improvement
77 largest genus
78 locus identification
79 logistic regression
80 machine
81 medicinal plants
82 metals
83 microsatellite content
84 novo
85 orthologs
86 performance
87 performing
88 plants
89 present work
90 protein
91 protein coding genes
92 putative genes
93 regression
94 research
95 resistance genes
96 sequence
97 sequencing technologies
98 size
99 structure
100 study
101 technology
102 total
103 transposable elements
104 vegetables
105 work
106 schema:name Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.)
107 schema:pagination 879-889
108 schema:productId Nbcdf928c746b42f984db3041a9873b12
109 Nc113707508a4430ebcb2554330e0c1ec
110 Nc406bc1331e547078f6f714e84454729
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148034707
112 https://doi.org/10.1007/s10142-022-00866-4
113 schema:sdDatePublished 2022-11-24T21:08
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N645d322a49b244cc95bd44ba80c3c703
116 schema:url https://doi.org/10.1007/s10142-022-00866-4
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N02d8b134e3224f2d8119b72c743d7b42 schema:volumeNumber 22
121 rdf:type schema:PublicationVolume
122 N23b8f812a9da4e35934435f9c05c76a2 rdf:first sg:person.01313506406.56
123 rdf:rest N645037e54ba349b7a85abaac169f205e
124 N30a0b64b54c049d28c9a85d4813fa1e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Transcription Factors
126 rdf:type schema:DefinedTerm
127 N3347a8f3fbb24d06bb3dbca3937f51de rdf:first N7b4a0530de8d45a08ecb587319895cbf
128 rdf:rest N7fb35110127a47ecb397731ccafaf6ec
129 N5efa72da167c42a5821ca6f22864ae17 schema:issueNumber 5
130 rdf:type schema:PublicationIssue
131 N645037e54ba349b7a85abaac169f205e rdf:first sg:person.01347175521.04
132 rdf:rest rdf:nil
133 N645d322a49b244cc95bd44ba80c3c703 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N71676185047744779a3778b503b0f0e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name DNA Transposable Elements
137 rdf:type schema:DefinedTerm
138 N7a45ee630dda435fb47813bc955fd9f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Genomics
140 rdf:type schema:DefinedTerm
141 N7b4a0530de8d45a08ecb587319895cbf schema:affiliation grid-institutes:grid.411124.3
142 schema:familyName Patat
143 schema:givenName Aysenur Soyturk
144 rdf:type schema:Person
145 N7fb35110127a47ecb397731ccafaf6ec rdf:first sg:person.011521452761.79
146 rdf:rest Ne2b5eaa1e58546ba907ec6c08e63426b
147 Nbcdf928c746b42f984db3041a9873b12 schema:name dimensions_id
148 schema:value pub.1148034707
149 rdf:type schema:PropertyValue
150 Nc113707508a4430ebcb2554330e0c1ec schema:name pubmed_id
151 schema:value 35596045
152 rdf:type schema:PropertyValue
153 Nc406bc1331e547078f6f714e84454729 schema:name doi
154 schema:value 10.1007/s10142-022-00866-4
155 rdf:type schema:PropertyValue
156 Nd37c8da9987d411facab1197f52cf312 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name MicroRNAs
158 rdf:type schema:DefinedTerm
159 Nda6f09b5e4f34285a6a11613f0e3ddca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Lepidium sativum
161 rdf:type schema:DefinedTerm
162 Ne2b5eaa1e58546ba907ec6c08e63426b rdf:first sg:person.011405764140.73
163 rdf:rest N23b8f812a9da4e35934435f9c05c76a2
164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
165 schema:name Biological Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
168 schema:name Genetics
169 rdf:type schema:DefinedTerm
170 sg:journal.1022614 schema:issn 1438-793X
171 1438-7948
172 schema:name Functional & Integrative Genomics
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.011405764140.73 schema:affiliation grid-institutes:grid.411124.3
176 schema:familyName Erdogdu
177 schema:givenName Behic Selman
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405764140.73
179 rdf:type schema:Person
180 sg:person.011521452761.79 schema:affiliation grid-institutes:grid.411124.3
181 schema:familyName Sen
182 schema:givenName Fatima
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521452761.79
184 rdf:type schema:Person
185 sg:person.01313506406.56 schema:affiliation grid-institutes:grid.411124.3
186 schema:familyName Uncu
187 schema:givenName Ali Tevfik
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313506406.56
189 rdf:type schema:Person
190 sg:person.01347175521.04 schema:affiliation grid-institutes:grid.411124.3
191 schema:familyName Uncu
192 schema:givenName Ayse Ozgur
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347175521.04
194 rdf:type schema:Person
195 sg:pub.10.1007/s11240-019-01596-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112950027
196 https://doi.org/10.1007/s11240-019-01596-5
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11356-017-8951-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519549
199 https://doi.org/10.1007/s11356-017-8951-3
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s12298-018-0622-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065426
202 https://doi.org/10.1007/s12298-018-0622-4
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nrg3374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941568
205 https://doi.org/10.1038/nrg3374
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/s41587-019-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120285368
208 https://doi.org/10.1038/s41587-019-0217-9
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/s41592-020-01056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135019727
211 https://doi.org/10.1038/s41592-020-01056-5
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/s41597-020-00743-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132669585
214 https://doi.org/10.1038/s41597-020-00743-4
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/s41598-021-83113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135369289
217 https://doi.org/10.1038/s41598-021-83113-3
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/srep18919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048568617
220 https://doi.org/10.1038/srep18919
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/s12859-014-0423-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028290941
223 https://doi.org/10.1186/s12859-014-0423-x
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/s12859-017-1584-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249960
226 https://doi.org/10.1186/s12859-017-1584-1
227 rdf:type schema:CreativeWork
228 grid-institutes:grid.411124.3 schema:alternateName Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
229 Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
230 schema:name Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
231 Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...