Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-20

AUTHORS

Aysenur Soyturk Patat, Fatima Sen, Behic Selman Erdogdu, Ali Tevfik Uncu, Ayse Ozgur Uncu

ABSTRACT

Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as “transcription factor coding.” Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4

DOI

http://dx.doi.org/10.1007/s10142-022-00866-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148034707

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35596045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patat", 
        "givenName": "Aysenur Soyturk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen", 
        "givenName": "Fatima", 
        "id": "sg:person.011521452761.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521452761.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdogdu", 
        "givenName": "Behic Selman", 
        "id": "sg:person.011405764140.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405764140.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uncu", 
        "givenName": "Ali Tevfik", 
        "id": "sg:person.01313506406.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313506406.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411124.3", 
          "name": [
            "Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uncu", 
        "givenName": "Ayse Ozgur", 
        "id": "sg:person.01347175521.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347175521.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-021-83113-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135369289", 
          "https://doi.org/10.1038/s41598-021-83113-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41592-020-01056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135019727", 
          "https://doi.org/10.1038/s41592-020-01056-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941568", 
          "https://doi.org/10.1038/nrg3374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41587-019-0217-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120285368", 
          "https://doi.org/10.1038/s41587-019-0217-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12298-018-0622-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110065426", 
          "https://doi.org/10.1007/s12298-018-0622-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11240-019-01596-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112950027", 
          "https://doi.org/10.1007/s11240-019-01596-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1584-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084249960", 
          "https://doi.org/10.1186/s12859-017-1584-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-014-0423-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028290941", 
          "https://doi.org/10.1186/s12859-014-0423-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41597-020-00743-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132669585", 
          "https://doi.org/10.1038/s41597-020-00743-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep18919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048568617", 
          "https://doi.org/10.1038/srep18919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-8951-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519549", 
          "https://doi.org/10.1007/s11356-017-8951-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-20", 
    "datePublishedReg": "2022-05-20", 
    "description": "Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5\u00a0Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as \u201ctranscription factor coding.\u201d Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10142-022-00866-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022614", 
        "issn": [
          "1438-793X", 
          "1438-7948"
        ], 
        "name": "Functional & Integrative Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "gene content", 
      "genomics-assisted crop improvement", 
      "candidate disease resistance genes", 
      "genomic research", 
      "disease resistance genes", 
      "protein coding genes", 
      "draft genome assembly", 
      "genome evolution studies", 
      "extensive genomic research", 
      "microsatellite content", 
      "chloroplast genome", 
      "genome size", 
      "coding genes", 
      "gene structure", 
      "crop improvement", 
      "putative genes", 
      "garden cress", 
      "genome assembly", 
      "gene domain", 
      "transposable elements", 
      "draft genome", 
      "locus identification", 
      "genomic sequences", 
      "Brassicaceae crops", 
      "largest genus", 
      "sequencing technologies", 
      "Brassicaceae family", 
      "genome", 
      "resistance genes", 
      "genes", 
      "evolution studies", 
      "DNA analysis", 
      "genus", 
      "cress", 
      "medicinal plants", 
      "orthologs", 
      "assembly", 
      "Brassicaceae", 
      "heavy metals", 
      "plants", 
      "protein", 
      "identification", 
      "crops", 
      "novo", 
      "healthy vegetables", 
      "Lepidium", 
      "sequence", 
      "characterization", 
      "family", 
      "MB", 
      "domain", 
      "content", 
      "present work", 
      "vegetables", 
      "structure", 
      "addition", 
      "analysis", 
      "elements", 
      "size", 
      "study", 
      "data", 
      "total", 
      "research", 
      "work", 
      "focus", 
      "foundation", 
      "metals", 
      "technology", 
      "coding", 
      "construction", 
      "improvement", 
      "regression", 
      "machine", 
      "performing", 
      "different machine", 
      "performance", 
      "algorithm", 
      "logistic regression"
    ], 
    "name": "Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.)", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148034707"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10142-022-00866-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35596045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10142-022-00866-4", 
      "https://app.dimensions.ai/details/publication/pub.1148034707"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_944.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10142-022-00866-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10142-022-00866-4'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      112 URIs      93 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10142-022-00866-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N0452711aa36a45979144275bc64f97ef
4 schema:citation sg:pub.10.1007/s11240-019-01596-5
5 sg:pub.10.1007/s11356-017-8951-3
6 sg:pub.10.1007/s12298-018-0622-4
7 sg:pub.10.1038/nrg3374
8 sg:pub.10.1038/s41587-019-0217-9
9 sg:pub.10.1038/s41592-020-01056-5
10 sg:pub.10.1038/s41597-020-00743-4
11 sg:pub.10.1038/s41598-021-83113-3
12 sg:pub.10.1038/srep18919
13 sg:pub.10.1186/s12859-014-0423-x
14 sg:pub.10.1186/s12859-017-1584-1
15 schema:datePublished 2022-05-20
16 schema:datePublishedReg 2022-05-20
17 schema:description Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as “transcription factor coding.” Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1022614
21 schema:keywords Brassicaceae
22 Brassicaceae crops
23 Brassicaceae family
24 DNA analysis
25 Lepidium
26 MB
27 addition
28 algorithm
29 analysis
30 assembly
31 candidate disease resistance genes
32 characterization
33 chloroplast genome
34 coding
35 coding genes
36 construction
37 content
38 cress
39 crop improvement
40 crops
41 data
42 different machine
43 disease resistance genes
44 domain
45 draft genome
46 draft genome assembly
47 elements
48 evolution studies
49 extensive genomic research
50 family
51 focus
52 foundation
53 garden cress
54 gene content
55 gene domain
56 gene structure
57 genes
58 genome
59 genome assembly
60 genome evolution studies
61 genome size
62 genomic research
63 genomic sequences
64 genomics-assisted crop improvement
65 genus
66 healthy vegetables
67 heavy metals
68 identification
69 improvement
70 largest genus
71 locus identification
72 logistic regression
73 machine
74 medicinal plants
75 metals
76 microsatellite content
77 novo
78 orthologs
79 performance
80 performing
81 plants
82 present work
83 protein
84 protein coding genes
85 putative genes
86 regression
87 research
88 resistance genes
89 sequence
90 sequencing technologies
91 size
92 structure
93 study
94 technology
95 total
96 transposable elements
97 vegetables
98 work
99 schema:name Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.)
100 schema:pagination 1-11
101 schema:productId N12a4ffc942294e0a9af265a22bbd5daa
102 Nab31a8d7a8ed4bb8bf4556fa4dffe8e8
103 Nc50797db67474074a5156d01ee5f9b83
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148034707
105 https://doi.org/10.1007/s10142-022-00866-4
106 schema:sdDatePublished 2022-09-02T16:08
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N5e8f01e0919e4d1c8ea48b1f17cb9224
109 schema:url https://doi.org/10.1007/s10142-022-00866-4
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0452711aa36a45979144275bc64f97ef rdf:first N414121359b6a4bda99cbbd8aa2e93e9d
114 rdf:rest Nd036f7d73bbb44f1a06105661eaf584e
115 N12a4ffc942294e0a9af265a22bbd5daa schema:name dimensions_id
116 schema:value pub.1148034707
117 rdf:type schema:PropertyValue
118 N209d3b5da1454c4ab33fcbaaa37ffbbd rdf:first sg:person.011405764140.73
119 rdf:rest Nbcdd5beb2a404194bde642346b0bfffd
120 N414121359b6a4bda99cbbd8aa2e93e9d schema:affiliation grid-institutes:grid.411124.3
121 schema:familyName Patat
122 schema:givenName Aysenur Soyturk
123 rdf:type schema:Person
124 N5e8f01e0919e4d1c8ea48b1f17cb9224 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nab31a8d7a8ed4bb8bf4556fa4dffe8e8 schema:name doi
127 schema:value 10.1007/s10142-022-00866-4
128 rdf:type schema:PropertyValue
129 Nb91c97d2509a4424a811f4dd87c30214 rdf:first sg:person.01347175521.04
130 rdf:rest rdf:nil
131 Nbcdd5beb2a404194bde642346b0bfffd rdf:first sg:person.01313506406.56
132 rdf:rest Nb91c97d2509a4424a811f4dd87c30214
133 Nc50797db67474074a5156d01ee5f9b83 schema:name pubmed_id
134 schema:value 35596045
135 rdf:type schema:PropertyValue
136 Nd036f7d73bbb44f1a06105661eaf584e rdf:first sg:person.011521452761.79
137 rdf:rest N209d3b5da1454c4ab33fcbaaa37ffbbd
138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biological Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
142 schema:name Genetics
143 rdf:type schema:DefinedTerm
144 sg:journal.1022614 schema:issn 1438-793X
145 1438-7948
146 schema:name Functional & Integrative Genomics
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.011405764140.73 schema:affiliation grid-institutes:grid.411124.3
150 schema:familyName Erdogdu
151 schema:givenName Behic Selman
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011405764140.73
153 rdf:type schema:Person
154 sg:person.011521452761.79 schema:affiliation grid-institutes:grid.411124.3
155 schema:familyName Sen
156 schema:givenName Fatima
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521452761.79
158 rdf:type schema:Person
159 sg:person.01313506406.56 schema:affiliation grid-institutes:grid.411124.3
160 schema:familyName Uncu
161 schema:givenName Ali Tevfik
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313506406.56
163 rdf:type schema:Person
164 sg:person.01347175521.04 schema:affiliation grid-institutes:grid.411124.3
165 schema:familyName Uncu
166 schema:givenName Ayse Ozgur
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347175521.04
168 rdf:type schema:Person
169 sg:pub.10.1007/s11240-019-01596-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112950027
170 https://doi.org/10.1007/s11240-019-01596-5
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11356-017-8951-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519549
173 https://doi.org/10.1007/s11356-017-8951-3
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s12298-018-0622-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065426
176 https://doi.org/10.1007/s12298-018-0622-4
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nrg3374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941568
179 https://doi.org/10.1038/nrg3374
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/s41587-019-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120285368
182 https://doi.org/10.1038/s41587-019-0217-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/s41592-020-01056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135019727
185 https://doi.org/10.1038/s41592-020-01056-5
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s41597-020-00743-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132669585
188 https://doi.org/10.1038/s41597-020-00743-4
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/s41598-021-83113-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135369289
191 https://doi.org/10.1038/s41598-021-83113-3
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/srep18919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048568617
194 https://doi.org/10.1038/srep18919
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/s12859-014-0423-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028290941
197 https://doi.org/10.1186/s12859-014-0423-x
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/s12859-017-1584-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084249960
200 https://doi.org/10.1186/s12859-017-1584-1
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.411124.3 schema:alternateName Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
203 Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
204 schema:name Department of Biotechnology, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
205 Department of Molecular Biology and Genetics, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...