Comparative and evolutionary analysis of α-amylase gene across monocots and dicots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Sorabh Sethi, Johar S. Saini, Amita Mohan, Navreet K. Brar, Shabda Verma, Navraj K. Sarao, Kulvinder S. Gill

ABSTRACT

α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal β-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice. More... »

PAGES

545-555

References to SciGraph publications

  • 1992-03. Assessment of protein models with three-dimensional profiles in NATURE
  • 1983-05. Gibberellic-acid-regulated expression of α-amylase and six other genes in wheat aleurone layers in PLANTA
  • 1990-04. The α-amylase genes in Oryza sativa: Characterization of cDNA clones and mRNA expression during seed germination in MOLECULAR GENETICS AND GENOMICS
  • 2014-03. Analysis of high pI α-Amy-1 gene family members expressed in late maturity α-amylase in wheat (Triticum aestivum L.) in MOLECULAR BREEDING
  • 2015-06. The Phyre2 web portal for protein modeling, prediction and analysis in NATURE PROTOCOLS
  • 1994-05. Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability in PLANT MOLECULAR BIOLOGY
  • 1997-09. Domain Evolution in the α-Amylase Family in JOURNAL OF MOLECULAR EVOLUTION
  • 1991-05. Differential expression of α-amylase genes in germinating rice and barley seeds in PLANT MOLECULAR BIOLOGY
  • 1985-04. Hybrid antibodies can target sites for attack by T cells in NATURE
  • 2010-06. Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat in MOLECULAR BREEDING
  • 1986-02. Comparison of amino acid sequences of eleven different α-amylases in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 1975-04. Penicillin-binding proteins and cell shape in E. coli in NATURE
  • 1982-09. Gibberellic acid and abscisic acid modulate protein synthesis and mRNA levels in barley aleurone layers in PLANT MOLECULAR BIOLOGY
  • 1988-08. α-Amylase structure and activity in THE PROTEIN JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10142-016-0505-0

    DOI

    http://dx.doi.org/10.1007/s10142-016-0505-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016709481

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27481351


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Introns", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnoliopsida", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multigene Family", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oryza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soybeans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triticum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "alpha-Amylases", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Punjab Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.412577.2", 
              "name": [
                "Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sethi", 
            "givenName": "Sorabh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Punjab Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.412577.2", 
              "name": [
                "Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saini", 
            "givenName": "Johar S.", 
            "id": "sg:person.01275702624.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275702624.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohan", 
            "givenName": "Amita", 
            "id": "sg:person.01030303421.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030303421.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Punjab Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.412577.2", 
              "name": [
                "Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brar", 
            "givenName": "Navreet K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Punjab Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.412577.2", 
              "name": [
                "Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verma", 
            "givenName": "Shabda", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Punjab Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.412577.2", 
              "name": [
                "Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarao", 
            "givenName": "Navraj K.", 
            "id": "sg:person.012022074775.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012022074775.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gill", 
            "givenName": "Kulvinder S.", 
            "id": "sg:person.01316700630.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316700630.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nprot.2015.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304490", 
              "https://doi.org/10.1038/nprot.2015.053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0733-5210(87)80004-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001357175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/mst197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001444669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.pp.40.060189.000523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001624975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2800309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002668698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2800309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002668698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/254516a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003617915", 
              "https://doi.org/10.1038/254516a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg1086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004943838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.53.3.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005799933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00021032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006156163", 
              "https://doi.org/10.1007/bf00021032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00021032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006156163", 
              "https://doi.org/10.1007/bf00021032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9375-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006525136", 
              "https://doi.org/10.1007/s11032-009-9375-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9375-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006525136", 
              "https://doi.org/10.1007/s11032-009-9375-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007683223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.43.12.1899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009084347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/6.2.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009193286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-013-9968-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009645641", 
              "https://doi.org/10.1007/s11032-013-9968-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-013-9968-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009645641", 
              "https://doi.org/10.1007/s11032-013-9968-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00257032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010518782", 
              "https://doi.org/10.1007/bf00257032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00257032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010518782", 
              "https://doi.org/10.1007/bf00257032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/314628a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011668037", 
              "https://doi.org/10.1038/314628a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.51.4.708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014504805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00396879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015768562", 
              "https://doi.org/10.1007/bf00396879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00396879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015768562", 
              "https://doi.org/10.1007/bf00396879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0968-0004(90)90035-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016011390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0968-0004(90)90035-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016011390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356083a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017646872", 
              "https://doi.org/10.1038/356083a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1389-1723(99)80114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022155255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-9861(83)90206-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024608544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0926-6593(66)90093-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027276017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0926-6593(66)90093-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027276017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030256769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19930450705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031481594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033522036", 
              "https://doi.org/10.1007/pl00006236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.4.1406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037577494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039761807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(94)01019-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042177054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.4.2.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045535408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046470836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00023233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046638153", 
              "https://doi.org/10.1007/bf00023233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00023233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046638153", 
              "https://doi.org/10.1007/bf00023233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560020916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046701730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00015072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048324260", 
              "https://doi.org/10.1007/bf00015072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00015072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048324260", 
              "https://doi.org/10.1007/bf00015072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0147046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048551709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0147046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048551709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0147046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048551709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2881069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048592512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2881069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048592512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01024888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050094214", 
              "https://doi.org/10.1007/bf01024888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-4838(00)00302-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050982971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052806377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00261726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052830975", 
              "https://doi.org/10.1007/bf00261726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00261726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052830975", 
              "https://doi.org/10.1007/bf00261726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.42.3.398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053252250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076088113", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a134659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081856823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09", 
        "datePublishedReg": "2016-09-01", 
        "description": "\u03b1-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472\u00a0bp in wheat to 2369\u00a0bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4\u00a0%. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal \u03b2-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3\u00a0% similarity among the monocots and 72.7 to 75.8\u00a0% among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10142-016-0505-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022614", 
            "issn": [
              "1438-793X", 
              "1438-7948"
            ], 
            "name": "Functional & Integrative Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Comparative and evolutionary analysis of \u03b1-amylase gene across monocots and dicots", 
        "pagination": "545-555", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4f9d2251437ac64d49d3c5fb403b4bbb70d721f0c27f0406612bba46da5e3c47"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27481351"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100939343"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10142-016-0505-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016709481"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10142-016-0505-0", 
          "https://app.dimensions.ai/details/publication/pub.1016709481"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10142-016-0505-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10142-016-0505-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10142-016-0505-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10142-016-0505-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10142-016-0505-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      84 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10142-016-0505-0 schema:about N622fd80c1b2f4e1f9dded5239e95f4c8
    2 N6fde0133a46c46959db756b1631c56d0
    3 N7c7167a1b3b64658878b2de164c2f735
    4 N7e68449fdcb34c6ca6d2f7ba95dc20e6
    5 N93c1942ede344229bf678b74d41d273e
    6 Na8746cf3e4e74d489a394a28af6f4dca
    7 Naaf35c70fcde4b2c9b2701575dcb1492
    8 Nbaf5c0e6a7c94152b93c99e9bf852609
    9 Nd815e1482c284b78b4d7effc3caeff61
    10 Ne18b1a18206d4b9f99ab61d39d2d1a10
    11 Nf318a10dae84424f8eff43d1ba3be422
    12 Nf3991eca543d467a81ba2ef5531f2c12
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N996c4b2a486f4b3fa9dc8d7dd72f8a5c
    16 schema:citation sg:pub.10.1007/bf00015072
    17 sg:pub.10.1007/bf00021032
    18 sg:pub.10.1007/bf00023233
    19 sg:pub.10.1007/bf00257032
    20 sg:pub.10.1007/bf00261726
    21 sg:pub.10.1007/bf00396879
    22 sg:pub.10.1007/bf01024888
    23 sg:pub.10.1007/pl00006236
    24 sg:pub.10.1007/s11032-009-9375-7
    25 sg:pub.10.1007/s11032-013-9968-z
    26 sg:pub.10.1038/254516a0
    27 sg:pub.10.1038/314628a0
    28 sg:pub.10.1038/356083a0
    29 sg:pub.10.1038/nprot.2015.053
    30 https://app.dimensions.ai/details/publication/pub.1076088113
    31 https://doi.org/10.1002/pro.5560020916
    32 https://doi.org/10.1002/star.19930450705
    33 https://doi.org/10.1016/0003-9861(83)90206-0
    34 https://doi.org/10.1016/0014-5793(94)01019-6
    35 https://doi.org/10.1016/0926-6593(66)90093-2
    36 https://doi.org/10.1016/0968-0004(90)90035-a
    37 https://doi.org/10.1016/s0167-4838(00)00302-2
    38 https://doi.org/10.1016/s0733-5210(87)80004-8
    39 https://doi.org/10.1016/s1389-1723(99)80114-5
    40 https://doi.org/10.1042/bj2800309
    41 https://doi.org/10.1042/bj2881069
    42 https://doi.org/10.1073/pnas.87.4.1406
    43 https://doi.org/10.1093/bib/6.2.118
    44 https://doi.org/10.1093/bioinformatics/btg1086
    45 https://doi.org/10.1093/bioinformatics/btl446
    46 https://doi.org/10.1093/bioinformatics/btm404
    47 https://doi.org/10.1093/molbev/mst197
    48 https://doi.org/10.1093/nar/gkq406
    49 https://doi.org/10.1093/nar/gku340
    50 https://doi.org/10.1093/oxfordjournals.jbchem.a134659
    51 https://doi.org/10.1104/pp.42.3.398
    52 https://doi.org/10.1104/pp.43.12.1899
    53 https://doi.org/10.1104/pp.51.4.708
    54 https://doi.org/10.1104/pp.53.3.453
    55 https://doi.org/10.1105/tpc.4.2.203
    56 https://doi.org/10.1146/annurev.pp.40.060189.000523
    57 https://doi.org/10.1371/journal.pone.0147046
    58 https://doi.org/10.3389/fpls.2014.00657
    59 schema:datePublished 2016-09
    60 schema:datePublishedReg 2016-09-01
    61 schema:description α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal β-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree false
    65 schema:isPartOf N6100863d340b4a14b4605a73e80b9bfe
    66 N98f9531a46424c71baa2c17ab841cff2
    67 sg:journal.1022614
    68 schema:name Comparative and evolutionary analysis of α-amylase gene across monocots and dicots
    69 schema:pagination 545-555
    70 schema:productId N8f84b70f957c4d55bd30f822dace194e
    71 Nc550ba9498a6488b8175fbb27b901975
    72 Nd49b77f71bb04050b0a5c8efe7775795
    73 Nf4ce0ceb34084c2f999650e9fadd17df
    74 Nf92c57113e3248ea92770e547d263dc2
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016709481
    76 https://doi.org/10.1007/s10142-016-0505-0
    77 schema:sdDatePublished 2019-04-11T12:36
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nf68789d0b89e498fa91276f04f846cfb
    80 schema:url https://link.springer.com/10.1007%2Fs10142-016-0505-0
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N00a6125462c443a491c97820d0dd279d rdf:first sg:person.012022074775.05
    85 rdf:rest N6feac81b514e4034a1fc4b9faba9015c
    86 N1ececbfcce0641efb2f3d627c8b3d691 rdf:first sg:person.01275702624.82
    87 rdf:rest N6d437d7b8652445d90414b9e5bac0eb8
    88 N3ecb3b3ff678402c889a225167406563 rdf:first Nf7aea69a6e204c9985c701ba4782530b
    89 rdf:rest N67b5ad5ac4f34275b4a8fe1e53121a2b
    90 N6100863d340b4a14b4605a73e80b9bfe schema:issueNumber 5
    91 rdf:type schema:PublicationIssue
    92 N622fd80c1b2f4e1f9dded5239e95f4c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Gene Expression Regulation, Plant
    94 rdf:type schema:DefinedTerm
    95 N67b5ad5ac4f34275b4a8fe1e53121a2b rdf:first N9cfa4b70d2e340e3af17d4a299e6e740
    96 rdf:rest N00a6125462c443a491c97820d0dd279d
    97 N6d437d7b8652445d90414b9e5bac0eb8 rdf:first sg:person.01030303421.07
    98 rdf:rest N3ecb3b3ff678402c889a225167406563
    99 N6fde0133a46c46959db756b1631c56d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Multigene Family
    101 rdf:type schema:DefinedTerm
    102 N6feac81b514e4034a1fc4b9faba9015c rdf:first sg:person.01316700630.30
    103 rdf:rest rdf:nil
    104 N7c7167a1b3b64658878b2de164c2f735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Phylogeny
    106 rdf:type schema:DefinedTerm
    107 N7e68449fdcb34c6ca6d2f7ba95dc20e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Magnoliopsida
    109 rdf:type schema:DefinedTerm
    110 N8f84b70f957c4d55bd30f822dace194e schema:name nlm_unique_id
    111 schema:value 100939343
    112 rdf:type schema:PropertyValue
    113 N93c1942ede344229bf678b74d41d273e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Arabidopsis
    115 rdf:type schema:DefinedTerm
    116 N98f9531a46424c71baa2c17ab841cff2 schema:volumeNumber 16
    117 rdf:type schema:PublicationVolume
    118 N996c4b2a486f4b3fa9dc8d7dd72f8a5c rdf:first Nedfd86279b134021b561fd34aae0c4c5
    119 rdf:rest N1ececbfcce0641efb2f3d627c8b3d691
    120 N9cfa4b70d2e340e3af17d4a299e6e740 schema:affiliation https://www.grid.ac/institutes/grid.412577.2
    121 schema:familyName Verma
    122 schema:givenName Shabda
    123 rdf:type schema:Person
    124 Na8746cf3e4e74d489a394a28af6f4dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Introns
    126 rdf:type schema:DefinedTerm
    127 Naaf35c70fcde4b2c9b2701575dcb1492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Amino Acid Sequence
    129 rdf:type schema:DefinedTerm
    130 Nbaf5c0e6a7c94152b93c99e9bf852609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name alpha-Amylases
    132 rdf:type schema:DefinedTerm
    133 Nc550ba9498a6488b8175fbb27b901975 schema:name readcube_id
    134 schema:value 4f9d2251437ac64d49d3c5fb403b4bbb70d721f0c27f0406612bba46da5e3c47
    135 rdf:type schema:PropertyValue
    136 Nd49b77f71bb04050b0a5c8efe7775795 schema:name dimensions_id
    137 schema:value pub.1016709481
    138 rdf:type schema:PropertyValue
    139 Nd815e1482c284b78b4d7effc3caeff61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Triticum
    141 rdf:type schema:DefinedTerm
    142 Ne18b1a18206d4b9f99ab61d39d2d1a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Zea mays
    144 rdf:type schema:DefinedTerm
    145 Nedfd86279b134021b561fd34aae0c4c5 schema:affiliation https://www.grid.ac/institutes/grid.412577.2
    146 schema:familyName Sethi
    147 schema:givenName Sorabh
    148 rdf:type schema:Person
    149 Nf318a10dae84424f8eff43d1ba3be422 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Oryza
    151 rdf:type schema:DefinedTerm
    152 Nf3991eca543d467a81ba2ef5531f2c12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Soybeans
    154 rdf:type schema:DefinedTerm
    155 Nf4ce0ceb34084c2f999650e9fadd17df schema:name pubmed_id
    156 schema:value 27481351
    157 rdf:type schema:PropertyValue
    158 Nf68789d0b89e498fa91276f04f846cfb schema:name Springer Nature - SN SciGraph project
    159 rdf:type schema:Organization
    160 Nf7aea69a6e204c9985c701ba4782530b schema:affiliation https://www.grid.ac/institutes/grid.412577.2
    161 schema:familyName Brar
    162 schema:givenName Navreet K.
    163 rdf:type schema:Person
    164 Nf92c57113e3248ea92770e547d263dc2 schema:name doi
    165 schema:value 10.1007/s10142-016-0505-0
    166 rdf:type schema:PropertyValue
    167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Biological Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Genetics
    172 rdf:type schema:DefinedTerm
    173 sg:journal.1022614 schema:issn 1438-793X
    174 1438-7948
    175 schema:name Functional & Integrative Genomics
    176 rdf:type schema:Periodical
    177 sg:person.01030303421.07 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    178 schema:familyName Mohan
    179 schema:givenName Amita
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030303421.07
    181 rdf:type schema:Person
    182 sg:person.012022074775.05 schema:affiliation https://www.grid.ac/institutes/grid.412577.2
    183 schema:familyName Sarao
    184 schema:givenName Navraj K.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012022074775.05
    186 rdf:type schema:Person
    187 sg:person.01275702624.82 schema:affiliation https://www.grid.ac/institutes/grid.412577.2
    188 schema:familyName Saini
    189 schema:givenName Johar S.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275702624.82
    191 rdf:type schema:Person
    192 sg:person.01316700630.30 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    193 schema:familyName Gill
    194 schema:givenName Kulvinder S.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316700630.30
    196 rdf:type schema:Person
    197 sg:pub.10.1007/bf00015072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048324260
    198 https://doi.org/10.1007/bf00015072
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bf00021032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006156163
    201 https://doi.org/10.1007/bf00021032
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bf00023233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046638153
    204 https://doi.org/10.1007/bf00023233
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bf00257032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010518782
    207 https://doi.org/10.1007/bf00257032
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf00261726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052830975
    210 https://doi.org/10.1007/bf00261726
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf00396879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015768562
    213 https://doi.org/10.1007/bf00396879
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf01024888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050094214
    216 https://doi.org/10.1007/bf01024888
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/pl00006236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033522036
    219 https://doi.org/10.1007/pl00006236
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s11032-009-9375-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006525136
    222 https://doi.org/10.1007/s11032-009-9375-7
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s11032-013-9968-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009645641
    225 https://doi.org/10.1007/s11032-013-9968-z
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/254516a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003617915
    228 https://doi.org/10.1038/254516a0
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/314628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011668037
    231 https://doi.org/10.1038/314628a0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/356083a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017646872
    234 https://doi.org/10.1038/356083a0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nprot.2015.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304490
    237 https://doi.org/10.1038/nprot.2015.053
    238 rdf:type schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1076088113 schema:CreativeWork
    240 https://doi.org/10.1002/pro.5560020916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046701730
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1002/star.19930450705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031481594
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/0003-9861(83)90206-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608544
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/0014-5793(94)01019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042177054
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/0926-6593(66)90093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027276017
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/0968-0004(90)90035-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016011390
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/s0167-4838(00)00302-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050982971
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/s0733-5210(87)80004-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001357175
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/s1389-1723(99)80114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155255
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1042/bj2800309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002668698
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1042/bj2881069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048592512
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1073/pnas.87.4.1406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037577494
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/bib/6.2.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009193286
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/bioinformatics/btg1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004943838
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1093/molbev/mst197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001444669
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1093/nar/gkq406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039761807
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1093/nar/gku340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052806377
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1093/oxfordjournals.jbchem.a134659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081856823
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1104/pp.42.3.398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053252250
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1104/pp.43.12.1899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009084347
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1104/pp.51.4.708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504805
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1104/pp.53.3.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005799933
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1105/tpc.4.2.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045535408
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1146/annurev.pp.40.060189.000523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001624975
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1371/journal.pone.0147046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048551709
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.3389/fpls.2014.00657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030256769
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
    297 schema:name Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
    298 rdf:type schema:Organization
    299 https://www.grid.ac/institutes/grid.412577.2 schema:alternateName Punjab Agricultural University
    300 schema:name Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...