Evaluation of serum markers for gastric cancer and its precursor diseases among high incidence and mortality rate of gastric cancer ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-22

AUTHORS

Boldbaatar Gantuya, Khasag Oyuntsetseg, Dashdorj Bolor, Yansan Erdene-Ochir, Ruvjir Sanduijav, Duger Davaadorj, Tegshee Tserentogtokh, Tomohisa Uchida, Yoshio Yamaoka

ABSTRACT

BackgroundMongolia has the highest mortality rate of gastric cancer. The early detection of cancer and down-staging screening for high risk patients are essential. Therefore, we aimed to validate serum markers for stratifying patients for further management.MethodsEndoscopy and histological examination were performed to determine high risk and gastric cancer patients. Rapid urease test, culture and histological tests were performed to diagnose Helicobacter pylori infection. Serum pepsinogen (PG) I and II and anti-H. pylori IgG were measured by ELISA. Receiver Operating Characteristic analysis was used to extract the best cut-off point.ResultsTotally 752 non-cancer and 50 consecutive gastric cancer patients were involved. The corpus chronic gastritis (72%: 36/50 vs. 56.4%: 427/752), corpus atrophy (42.0%: 21/50 vs. 18.2%: 137/752) and intestinal metaplasia (IM) (64.0%: 32/50 vs. 21.5%: 162/752) were significantly higher in gastric cancer than non-cancer patients, respectively. Therefore, corpus chronic gastritis, corpus atrophy and IM were considered as high risk disease. The best serum marker to predict the high risk status was PGI/II < 3.1 (sensitivity 67.2%, specificity 61%) and PGI/II further reduced to < 2.2 (sensitivity 66%, specificity 65.1%) together with PGI < 28 ng/mL (sensitivity 70%, specificity 70%) were the best prediction for gastric cancer. The best cut-off point to diagnose H. pylori infection was anti-H. pylori IgG > 8 U/mL. Multivariate analysis showed that anti-H. pylori IgG > 8 U/mL and PGI/II < 3.1 increased risk for high risk status and PGI/II < 3.1 remained to increase risk for gastric cancer.ConclusionThe serum diagnosis using PGI/II < 3.1 cut-off value is valuable marker to predict high risk patients for population based massive screening. More... »

PAGES

104-112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10120-018-0844-8

DOI

http://dx.doi.org/10.1007/s10120-018-0844-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105067754

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29934751


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter pylori", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mongolia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pepsinogens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/grid.444534.6", 
          "name": [
            "Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, 879-5593, Yufu, Oita, Japan", 
            "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gantuya", 
        "givenName": "Boldbaatar", 
        "id": "sg:person.011020376440.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020376440.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/grid.444534.6", 
          "name": [
            "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oyuntsetseg", 
        "givenName": "Khasag", 
        "id": "sg:person.012413337440.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413337440.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endoscopy, National Cancer Center, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Endoscopy, National Cancer Center, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolor", 
        "givenName": "Dashdorj", 
        "id": "sg:person.011615757040.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615757040.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, National Cancer Center, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, National Cancer Center, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdene-Ochir", 
        "givenName": "Yansan", 
        "id": "sg:person.013210720040.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013210720040.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Oncology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/grid.444534.6", 
          "name": [
            "Department of Oncology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanduijav", 
        "givenName": "Ruvjir", 
        "id": "sg:person.07622753675.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622753675.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/grid.444534.6", 
          "name": [
            "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davaadorj", 
        "givenName": "Duger", 
        "id": "sg:person.01241454341.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241454341.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia", 
          "id": "http://www.grid.ac/institutes/grid.444534.6", 
          "name": [
            "Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tserentogtokh", 
        "givenName": "Tegshee", 
        "id": "sg:person.015401241440.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401241440.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412334.3", 
          "name": [
            "Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchida", 
        "givenName": "Tomohisa", 
        "id": "sg:person.0751157413.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751157413.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, 879-5593, Yufu, Oita, Japan", 
            "Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamaoka", 
        "givenName": "Yoshio", 
        "id": "sg:person.0700715672.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700715672.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00535-009-0142-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002108208", 
          "https://doi.org/10.1007/s00535-009-0142-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6601511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041659397", 
          "https://doi.org/10.1038/sj.bjc.6601511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-015-0473-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020620993", 
          "https://doi.org/10.1007/s10120-015-0473-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-612-8_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003719420", 
          "https://doi.org/10.1007/978-1-61779-612-8_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10620-012-2360-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014788162", 
          "https://doi.org/10.1007/s10620-012-2360-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-22", 
    "datePublishedReg": "2018-06-22", 
    "description": "BackgroundMongolia has the highest mortality rate of gastric cancer. The early detection of cancer and down-staging screening for high risk patients are essential. Therefore, we aimed to validate serum markers for stratifying patients for further management.MethodsEndoscopy and histological examination were performed to determine high risk and gastric cancer patients. Rapid urease test, culture and histological tests were performed to diagnose Helicobacter pylori infection. Serum pepsinogen (PG) I and II and anti-H. pylori IgG were measured by ELISA. Receiver Operating Characteristic analysis was used to extract the best cut-off point.ResultsTotally 752 non-cancer and 50 consecutive gastric cancer patients were involved. The corpus chronic gastritis (72%: 36/50 vs. 56.4%: 427/752), corpus atrophy (42.0%: 21/50 vs. 18.2%: 137/752) and intestinal metaplasia (IM) (64.0%: 32/50 vs. 21.5%: 162/752) were significantly higher in gastric cancer than non-cancer patients, respectively. Therefore, corpus chronic gastritis, corpus atrophy and IM were considered as high risk disease. The best serum marker to predict the high risk status was PGI/II <\u20093.1 (sensitivity 67.2%, specificity 61%) and PGI/II further reduced to <\u20092.2 (sensitivity 66%, specificity 65.1%) together with PGI <\u200928\u00a0ng/mL (sensitivity 70%, specificity 70%) were the best prediction for gastric cancer. The best cut-off point to diagnose H. pylori infection was anti-H. pylori IgG >\u20098\u00a0U/mL. Multivariate analysis showed that anti-H. pylori IgG >\u20098\u00a0U/mL and PGI/II <\u20093.1 increased risk for high risk status and PGI/II <\u20093.1 remained to increase risk for gastric cancer.ConclusionThe serum diagnosis using PGI/II <\u20093.1 cut-off value is valuable marker to predict high risk patients for population based massive screening.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10120-018-0844-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5854282", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7852997", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5899615", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6148095", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2497750", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1020959", 
        "issn": [
          "1436-3291", 
          "1436-3305"
        ], 
        "name": "Gastric Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "PGI/II", 
      "high risk patients", 
      "gastric cancer patients", 
      "gastric cancer", 
      "high risk status", 
      "serum markers", 
      "pylori IgG", 
      "intestinal metaplasia", 
      "corpus atrophy", 
      "risk patients", 
      "cancer patients", 
      "chronic gastritis", 
      "pylori infection", 
      "mortality rate", 
      "consecutive gastric cancer patients", 
      "non-cancer patients", 
      "risk status", 
      "high risk disease", 
      "Helicobacter pylori infection", 
      "good serum marker", 
      "serum pepsinogen I", 
      "rapid urease test", 
      "high mortality rate", 
      "risk disease", 
      "precursor disease", 
      "further management", 
      "pepsinogen I", 
      "histological examination", 
      "high risk", 
      "high incidence", 
      "urease test", 
      "patients", 
      "Receiver Operating Characteristic (ROC) analysis", 
      "histological tests", 
      "multivariate analysis", 
      "cancer", 
      "Operating Characteristic (ROC) analysis", 
      "valuable marker", 
      "early detection", 
      "IgG", 
      "cancer area", 
      "gastritis", 
      "atrophy", 
      "infection", 
      "risk", 
      "disease", 
      "markers", 
      "serum diagnosis", 
      "characteristic analysis", 
      "status", 
      "metaplasia", 
      "staging", 
      "incidence", 
      "diagnosis", 
      "ELISA", 
      "massive screening", 
      "examination", 
      "rate", 
      "test", 
      "screening", 
      "mL", 
      "population", 
      "PGI", 
      "management", 
      "evaluation", 
      "culture", 
      "analysis", 
      "detection", 
      "point", 
      "area", 
      "values", 
      "better prediction", 
      "prediction", 
      "BackgroundMongolia", 
      "MethodsEndoscopy", 
      "ResultsTotally 752", 
      "corpus chronic gastritis", 
      "gastric cancer area"
    ], 
    "name": "Evaluation of serum markers for gastric cancer and its precursor diseases among high incidence and mortality rate of gastric cancer area", 
    "pagination": "104-112", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105067754"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10120-018-0844-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29934751"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10120-018-0844-8", 
      "https://app.dimensions.ai/details/publication/pub.1105067754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_793.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10120-018-0844-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10120-018-0844-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10120-018-0844-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10120-018-0844-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10120-018-0844-8'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      22 PREDICATES      125 URIs      112 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10120-018-0844-8 schema:about N142a68e1e86d46ea96914153c0c74a6a
2 N14e639144d9341d1bc47195d3017d17d
3 N1feed12c0ea2449ab6807e0c15fa02aa
4 N2b5bb50ee5ea462e921384d343dbb23e
5 N2dbf04a860354a8ea04d28d47aead9fa
6 N627d93da44e242b9911d7bbaa418c066
7 N70b69de037a84ee7b9b94a76c6a41904
8 N8e6b54bd30ef4570bfb45dc5006b8a9b
9 N9c32c5b6ad6a4def81bd97d0ab893b25
10 Na5b882c06f4d4a789dbb9bbf413a86a1
11 Nab6ed91a92ec4b3ca7208210031c43bc
12 Nb9c156c197734fbd872c612c5061839c
13 Nc3d334c5d3cd4308a7449bf72f66b40e
14 Ncc3afa4e5c124c43877009d4f0fec834
15 Nd4bcadefe43f40c9b2dce47321be3111
16 Nd4d92283e693496892da63513c5bfc3c
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author Nfcaa0dc5a08141688dcadb65d6be597f
20 schema:citation sg:pub.10.1007/978-1-61779-612-8_26
21 sg:pub.10.1007/s00535-009-0142-7
22 sg:pub.10.1007/s10120-015-0473-4
23 sg:pub.10.1007/s10620-012-2360-8
24 sg:pub.10.1038/sj.bjc.6601511
25 schema:datePublished 2018-06-22
26 schema:datePublishedReg 2018-06-22
27 schema:description BackgroundMongolia has the highest mortality rate of gastric cancer. The early detection of cancer and down-staging screening for high risk patients are essential. Therefore, we aimed to validate serum markers for stratifying patients for further management.MethodsEndoscopy and histological examination were performed to determine high risk and gastric cancer patients. Rapid urease test, culture and histological tests were performed to diagnose Helicobacter pylori infection. Serum pepsinogen (PG) I and II and anti-H. pylori IgG were measured by ELISA. Receiver Operating Characteristic analysis was used to extract the best cut-off point.ResultsTotally 752 non-cancer and 50 consecutive gastric cancer patients were involved. The corpus chronic gastritis (72%: 36/50 vs. 56.4%: 427/752), corpus atrophy (42.0%: 21/50 vs. 18.2%: 137/752) and intestinal metaplasia (IM) (64.0%: 32/50 vs. 21.5%: 162/752) were significantly higher in gastric cancer than non-cancer patients, respectively. Therefore, corpus chronic gastritis, corpus atrophy and IM were considered as high risk disease. The best serum marker to predict the high risk status was PGI/II < 3.1 (sensitivity 67.2%, specificity 61%) and PGI/II further reduced to < 2.2 (sensitivity 66%, specificity 65.1%) together with PGI < 28 ng/mL (sensitivity 70%, specificity 70%) were the best prediction for gastric cancer. The best cut-off point to diagnose H. pylori infection was anti-H. pylori IgG > 8 U/mL. Multivariate analysis showed that anti-H. pylori IgG > 8 U/mL and PGI/II < 3.1 increased risk for high risk status and PGI/II < 3.1 remained to increase risk for gastric cancer.ConclusionThe serum diagnosis using PGI/II < 3.1 cut-off value is valuable marker to predict high risk patients for population based massive screening.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N67f46527f3374ab3846ac9f8e0788225
32 Ne9e7fc720f36490dba522bc044eb1043
33 sg:journal.1020959
34 schema:keywords BackgroundMongolia
35 ELISA
36 Helicobacter pylori infection
37 IgG
38 MethodsEndoscopy
39 Operating Characteristic (ROC) analysis
40 PGI
41 PGI/II
42 Receiver Operating Characteristic (ROC) analysis
43 ResultsTotally 752
44 analysis
45 area
46 atrophy
47 better prediction
48 cancer
49 cancer area
50 cancer patients
51 characteristic analysis
52 chronic gastritis
53 consecutive gastric cancer patients
54 corpus atrophy
55 corpus chronic gastritis
56 culture
57 detection
58 diagnosis
59 disease
60 early detection
61 evaluation
62 examination
63 further management
64 gastric cancer
65 gastric cancer area
66 gastric cancer patients
67 gastritis
68 good serum marker
69 high incidence
70 high mortality rate
71 high risk
72 high risk disease
73 high risk patients
74 high risk status
75 histological examination
76 histological tests
77 incidence
78 infection
79 intestinal metaplasia
80 mL
81 management
82 markers
83 massive screening
84 metaplasia
85 mortality rate
86 multivariate analysis
87 non-cancer patients
88 patients
89 pepsinogen I
90 point
91 population
92 precursor disease
93 prediction
94 pylori IgG
95 pylori infection
96 rapid urease test
97 rate
98 risk
99 risk disease
100 risk patients
101 risk status
102 screening
103 serum diagnosis
104 serum markers
105 serum pepsinogen I
106 staging
107 status
108 test
109 urease test
110 valuable marker
111 values
112 schema:name Evaluation of serum markers for gastric cancer and its precursor diseases among high incidence and mortality rate of gastric cancer area
113 schema:pagination 104-112
114 schema:productId N860c4261ffcf422891a68e48e1cd8a1a
115 N9ee5f749ace944b6991062a4e9d13612
116 Nfd3f252875c141308c8b909308868836
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067754
118 https://doi.org/10.1007/s10120-018-0844-8
119 schema:sdDatePublished 2021-12-01T19:42
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher N011131ac3c104dc7a5625979104b3c22
122 schema:url https://doi.org/10.1007/s10120-018-0844-8
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N011131ac3c104dc7a5625979104b3c22 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N06343395915f41708d56afe6c0dee376 rdf:first sg:person.07622753675.45
129 rdf:rest N2e97413899c64368bbc821638646dce4
130 N142a68e1e86d46ea96914153c0c74a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Helicobacter Infections
132 rdf:type schema:DefinedTerm
133 N14e639144d9341d1bc47195d3017d17d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Aged, 80 and over
135 rdf:type schema:DefinedTerm
136 N1f9968d06525498d8c956323691e37c5 rdf:first sg:person.011615757040.34
137 rdf:rest N6d68826a4ca44d7c8785d7b6cf39aafa
138 N1feed12c0ea2449ab6807e0c15fa02aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Helicobacter pylori
140 rdf:type schema:DefinedTerm
141 N2b5bb50ee5ea462e921384d343dbb23e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Pepsinogens
143 rdf:type schema:DefinedTerm
144 N2dbf04a860354a8ea04d28d47aead9fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Biomarkers, Tumor
146 rdf:type schema:DefinedTerm
147 N2e97413899c64368bbc821638646dce4 rdf:first sg:person.01241454341.04
148 rdf:rest N39c0d70b3dda45a9bb7a5cf656b17484
149 N39c0d70b3dda45a9bb7a5cf656b17484 rdf:first sg:person.015401241440.06
150 rdf:rest Nb0c948b8bb654f69a1c1127ca2e2fbde
151 N627d93da44e242b9911d7bbaa418c066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Aged
153 rdf:type schema:DefinedTerm
154 N67f46527f3374ab3846ac9f8e0788225 schema:volumeNumber 22
155 rdf:type schema:PublicationVolume
156 N6d68826a4ca44d7c8785d7b6cf39aafa rdf:first sg:person.013210720040.55
157 rdf:rest N06343395915f41708d56afe6c0dee376
158 N70b69de037a84ee7b9b94a76c6a41904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Adolescent
160 rdf:type schema:DefinedTerm
161 N860c4261ffcf422891a68e48e1cd8a1a schema:name dimensions_id
162 schema:value pub.1105067754
163 rdf:type schema:PropertyValue
164 N8e6b54bd30ef4570bfb45dc5006b8a9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Stomach Neoplasms
166 rdf:type schema:DefinedTerm
167 N9c32c5b6ad6a4def81bd97d0ab893b25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Male
169 rdf:type schema:DefinedTerm
170 N9ee5f749ace944b6991062a4e9d13612 schema:name doi
171 schema:value 10.1007/s10120-018-0844-8
172 rdf:type schema:PropertyValue
173 Na5b882c06f4d4a789dbb9bbf413a86a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Mongolia
175 rdf:type schema:DefinedTerm
176 Na8518223c86c482cbddde865026b775f rdf:first sg:person.0700715672.80
177 rdf:rest rdf:nil
178 Nab6ed91a92ec4b3ca7208210031c43bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Humans
180 rdf:type schema:DefinedTerm
181 Nb0c948b8bb654f69a1c1127ca2e2fbde rdf:first sg:person.0751157413.73
182 rdf:rest Na8518223c86c482cbddde865026b775f
183 Nb9c156c197734fbd872c612c5061839c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Antibodies, Bacterial
185 rdf:type schema:DefinedTerm
186 Nc3d334c5d3cd4308a7449bf72f66b40e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adult
188 rdf:type schema:DefinedTerm
189 Ncc3afa4e5c124c43877009d4f0fec834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Middle Aged
191 rdf:type schema:DefinedTerm
192 Nd4bcadefe43f40c9b2dce47321be3111 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Incidence
194 rdf:type schema:DefinedTerm
195 Nd4d92283e693496892da63513c5bfc3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Female
197 rdf:type schema:DefinedTerm
198 Ne88464922f5a478d9a3804a7a61d7f7d rdf:first sg:person.012413337440.59
199 rdf:rest N1f9968d06525498d8c956323691e37c5
200 Ne9e7fc720f36490dba522bc044eb1043 schema:issueNumber 1
201 rdf:type schema:PublicationIssue
202 Nfcaa0dc5a08141688dcadb65d6be597f rdf:first sg:person.011020376440.71
203 rdf:rest Ne88464922f5a478d9a3804a7a61d7f7d
204 Nfd3f252875c141308c8b909308868836 schema:name pubmed_id
205 schema:value 29934751
206 rdf:type schema:PropertyValue
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
211 schema:name Oncology and Carcinogenesis
212 rdf:type schema:DefinedTerm
213 sg:grant.2497750 http://pending.schema.org/fundedItem sg:pub.10.1007/s10120-018-0844-8
214 rdf:type schema:MonetaryGrant
215 sg:grant.5854282 http://pending.schema.org/fundedItem sg:pub.10.1007/s10120-018-0844-8
216 rdf:type schema:MonetaryGrant
217 sg:grant.5899615 http://pending.schema.org/fundedItem sg:pub.10.1007/s10120-018-0844-8
218 rdf:type schema:MonetaryGrant
219 sg:grant.6148095 http://pending.schema.org/fundedItem sg:pub.10.1007/s10120-018-0844-8
220 rdf:type schema:MonetaryGrant
221 sg:grant.7852997 http://pending.schema.org/fundedItem sg:pub.10.1007/s10120-018-0844-8
222 rdf:type schema:MonetaryGrant
223 sg:journal.1020959 schema:issn 1436-3291
224 1436-3305
225 schema:name Gastric Cancer
226 schema:publisher Springer Nature
227 rdf:type schema:Periodical
228 sg:person.011020376440.71 schema:affiliation grid-institutes:grid.444534.6
229 schema:familyName Gantuya
230 schema:givenName Boldbaatar
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020376440.71
232 rdf:type schema:Person
233 sg:person.011615757040.34 schema:affiliation grid-institutes:None
234 schema:familyName Bolor
235 schema:givenName Dashdorj
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615757040.34
237 rdf:type schema:Person
238 sg:person.012413337440.59 schema:affiliation grid-institutes:grid.444534.6
239 schema:familyName Oyuntsetseg
240 schema:givenName Khasag
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413337440.59
242 rdf:type schema:Person
243 sg:person.01241454341.04 schema:affiliation grid-institutes:grid.444534.6
244 schema:familyName Davaadorj
245 schema:givenName Duger
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241454341.04
247 rdf:type schema:Person
248 sg:person.013210720040.55 schema:affiliation grid-institutes:None
249 schema:familyName Erdene-Ochir
250 schema:givenName Yansan
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013210720040.55
252 rdf:type schema:Person
253 sg:person.015401241440.06 schema:affiliation grid-institutes:grid.444534.6
254 schema:familyName Tserentogtokh
255 schema:givenName Tegshee
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401241440.06
257 rdf:type schema:Person
258 sg:person.0700715672.80 schema:affiliation grid-institutes:grid.39382.33
259 schema:familyName Yamaoka
260 schema:givenName Yoshio
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700715672.80
262 rdf:type schema:Person
263 sg:person.0751157413.73 schema:affiliation grid-institutes:grid.412334.3
264 schema:familyName Uchida
265 schema:givenName Tomohisa
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751157413.73
267 rdf:type schema:Person
268 sg:person.07622753675.45 schema:affiliation grid-institutes:grid.444534.6
269 schema:familyName Sanduijav
270 schema:givenName Ruvjir
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622753675.45
272 rdf:type schema:Person
273 sg:pub.10.1007/978-1-61779-612-8_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003719420
274 https://doi.org/10.1007/978-1-61779-612-8_26
275 rdf:type schema:CreativeWork
276 sg:pub.10.1007/s00535-009-0142-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002108208
277 https://doi.org/10.1007/s00535-009-0142-7
278 rdf:type schema:CreativeWork
279 sg:pub.10.1007/s10120-015-0473-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020620993
280 https://doi.org/10.1007/s10120-015-0473-4
281 rdf:type schema:CreativeWork
282 sg:pub.10.1007/s10620-012-2360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014788162
283 https://doi.org/10.1007/s10620-012-2360-8
284 rdf:type schema:CreativeWork
285 sg:pub.10.1038/sj.bjc.6601511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659397
286 https://doi.org/10.1038/sj.bjc.6601511
287 rdf:type schema:CreativeWork
288 grid-institutes:None schema:alternateName Department of Endoscopy, National Cancer Center, Ulaanbaatar, Mongolia
289 Department of General Surgery, National Cancer Center, Ulaanbaatar, Mongolia
290 schema:name Department of Endoscopy, National Cancer Center, Ulaanbaatar, Mongolia
291 Department of General Surgery, National Cancer Center, Ulaanbaatar, Mongolia
292 rdf:type schema:Organization
293 grid-institutes:grid.39382.33 schema:alternateName Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 77030, Houston, TX, USA
294 schema:name Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, 879-5593, Yufu, Oita, Japan
295 Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 77030, Houston, TX, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.412334.3 schema:alternateName Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
298 schema:name Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
299 rdf:type schema:Organization
300 grid-institutes:grid.444534.6 schema:alternateName Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
301 Department of Oncology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
302 schema:name Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, 879-5593, Yufu, Oita, Japan
303 Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
304 Department of Oncology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...