An approach based on mixed hierarchical clustering and optimization for graph analysis in social media network: toward globally hierarchical community ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-08

AUTHORS

Radhia Toujani, Jalel Akaichi

ABSTRACT

As the massive size of contemporary social networks poses a serious challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities, we develop, in this manuscript, an approach used to discover hierarchical community structure in large networks. The introduced hybrid technique combines the strengths of bottom-up hierarchical clustering method with that of top-down hierarchical clustering. In fact, the first approach is efficient in identifying small clusters, while the second one is good at determining large ones. Our mixed hierarchical clustering technique, based on the assumption that there exists an initial solution composed of k classes and the combination of the two previously mentioned methods, does not the change of the number of partitions, modifies the repartition of the initial classes. At the end of the introduced clustering process, a fixed point, representing a local optimum of the cost function which measures the degree of importance between two partitions, is obtained. Consequently, the introduced combined model leads to the emergence of local community structure. To avoid this local optimum and detect community structure converged to the global optimum of the cost function, the detection of community structures, in this study, is not considered only as a clustering problem, but as an optimization issue. Besides, a novel mixed hierarchical clustering algorithm based on swarms intelligence is suggested for identifying community structures in social networks. In order to validate the proposed method, performances of the introduced approach are evaluated using both real and artificial networks as well as internal and external clustering evaluation criteria. More... »

PAGES

1-41

References to SciGraph publications

  • 2016-11. A Comparative Analysis of Community Detection Algorithms on Artificial Networks in SCIENTIFIC REPORTS
  • 2012-11. Optimal modularity: a demonstration of the evolutionary advantage of modular architectures in JOURNAL OF EVOLUTIONARY ECONOMICS
  • 2005. Computing Communities in Large Networks Using Random Walks in COMPUTER AND INFORMATION SCIENCES - ISCIS 2005
  • 2012-05. Community detection in Social Media in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2004-03. Detecting community structure in networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2011-03-17. An Introduction to Social Network Data Analytics in SOCIAL NETWORK DATA ANALYTICS
  • 2010-08. Link communities reveal multiscale complexity in networks in NATURE
  • 2012-12. Overlapping community detection using a community optimized graph swarm in SOCIAL NETWORK ANALYSIS AND MINING
  • 2007. Email Community Detection Using Artificial Ant Colony Clustering in ADVANCES IN WEB AND NETWORK TECHNOLOGIES, AND INFORMATION MANAGEMENT
  • 2003-09. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations in BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10115-019-01329-2

    DOI

    http://dx.doi.org/10.1007/s10115-019-01329-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111982554


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Sociology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tunis University", 
              "id": "https://www.grid.ac/institutes/grid.265234.4", 
              "name": [
                "BESTMOD Department, Higher Institute of Management, University of Tunis, Tunis, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toujani", 
            "givenName": "Radhia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bisha", 
              "id": "https://www.grid.ac/institutes/grid.494608.7", 
              "name": [
                "College of Computer Science, University of Bisha, Bisha, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akaichi", 
            "givenName": "Jalel", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature09182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000936185", 
              "https://doi.org/10.1038/nature09182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000936185", 
              "https://doi.org/10.1038/nature09182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.036111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003126434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.036111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003126434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2015.03.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004544788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11569596_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004698403", 
              "https://doi.org/10.1007/11569596_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11569596_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004698403", 
              "https://doi.org/10.1007/11569596_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.72.027104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005495710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.72.027104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005495710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0611034104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006029486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.016103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006270814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.016103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006270814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00124-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007257290", 
              "https://doi.org/10.1140/epjb/e2004-00124-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13278-012-0050-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007806978", 
              "https://doi.org/10.1007/s13278-012-0050-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008006377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008006377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.036102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008670010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.036102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008670010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2016.05.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009029287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2008.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011250070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2016.08.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013531673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601602103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016125157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-011-0224-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017664270", 
              "https://doi.org/10.1007/s10618-011-0224-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.122653799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020482279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021120999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021120999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep30750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023359647", 
              "https://doi.org/10.1038/srep30750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00265-003-0651-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025345051", 
              "https://doi.org/10.1007/s00265-003-0651-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027332108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0605965104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028061681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asi.20591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030734435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2908812.2908818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033846228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2016.06.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033930170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035552384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035552384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037912856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72909-9_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043989980", 
              "https://doi.org/10.1007/978-3-540-72909-9_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72909-9_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043989980", 
              "https://doi.org/10.1007/978-3-540-72909-9_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.20820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044445556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8462-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046012400", 
              "https://doi.org/10.1007/978-1-4419-8462-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8462-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046012400", 
              "https://doi.org/10.1007/978-1-4419-8462-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048148225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048148225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2501654.2501657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050727578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00191-011-0240-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051209484", 
              "https://doi.org/10.1007/s00191-011-0240-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-985x.2010.00646_6.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053379675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-985x.2010.00646_6.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053379675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/jar.33.4.3629752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058909178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.056122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060732187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.056122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060732187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpds.2015.2390633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061754807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijdta.2016.9.6.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067233578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijdta.2016.9.6.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067233578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijbic.2016.076329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067436949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2017.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083699557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/sym9050062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085057089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3110025.3110125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092753185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2017.11.089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092869243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icrito.2015.7359276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093928777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/setit.2016.7939902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094667247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/codit.2017.8102624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094870445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.26599/tst.2018.9010053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101079786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2018.05.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104127815"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-08", 
        "datePublishedReg": "2019-02-08", 
        "description": "As the massive size of contemporary social networks poses a serious challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities, we develop, in this manuscript, an approach used to discover hierarchical community structure in large networks. The introduced hybrid technique combines the strengths of bottom-up hierarchical clustering method with that of top-down hierarchical clustering. In fact, the first approach is efficient in identifying small clusters, while the second one is good at determining large ones. Our mixed hierarchical clustering technique, based on the assumption that there exists an initial solution composed of k classes and the combination of the two previously mentioned methods, does not the change of the number of partitions, modifies the repartition of the initial classes. At the end of the introduced clustering process, a fixed point, representing a local optimum of the cost function which measures the degree of importance between two partitions, is obtained. Consequently, the introduced combined model leads to the emergence of local community structure. To avoid this local optimum and detect community structure converged to the global optimum of the cost function, the detection of community structures, in this study, is not considered only as a clustering problem, but as an optimization issue. Besides, a novel mixed hierarchical clustering algorithm based on swarms intelligence is suggested for identifying community structures in social networks. In order to validate the proposed method, performances of the introduced approach are evaluated using both real and artificial networks as well as internal and external clustering evaluation criteria.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10115-019-01329-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041769", 
            "issn": [
              "0219-1377", 
              "0219-3116"
            ], 
            "name": "Knowledge and Information Systems", 
            "type": "Periodical"
          }
        ], 
        "name": "An approach based on mixed hierarchical clustering and optimization for graph analysis in social media network: toward globally hierarchical community structure", 
        "pagination": "1-41", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5f21639dcd0f9af7971b5209d6d9c41215fdd0f32d199c4541228f0217aa72fc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10115-019-01329-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111982554"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10115-019-01329-2", 
          "https://app.dimensions.ai/details/publication/pub.1111982554"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121951_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10115-019-01329-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-019-01329-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-019-01329-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-019-01329-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-019-01329-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    223 TRIPLES      21 PREDICATES      74 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10115-019-01329-2 schema:about anzsrc-for:16
    2 anzsrc-for:1608
    3 schema:author Nd33e375fdf144229a80cdb16b535206b
    4 schema:citation sg:pub.10.1007/11569596_31
    5 sg:pub.10.1007/978-1-4419-8462-3_1
    6 sg:pub.10.1007/978-3-540-72909-9_33
    7 sg:pub.10.1007/s00191-011-0240-6
    8 sg:pub.10.1007/s00265-003-0651-y
    9 sg:pub.10.1007/s10618-011-0224-z
    10 sg:pub.10.1007/s13278-012-0050-3
    11 sg:pub.10.1038/nature09182
    12 sg:pub.10.1038/srep30750
    13 sg:pub.10.1140/epjb/e2004-00124-y
    14 https://doi.org/10.1002/asi.20591
    15 https://doi.org/10.1002/bies.20820
    16 https://doi.org/10.1016/j.csda.2008.08.001
    17 https://doi.org/10.1016/j.eswa.2017.02.008
    18 https://doi.org/10.1016/j.future.2016.06.033
    19 https://doi.org/10.1016/j.knosys.2015.04.007
    20 https://doi.org/10.1016/j.knosys.2016.05.024
    21 https://doi.org/10.1016/j.knosys.2018.05.026
    22 https://doi.org/10.1016/j.physa.2015.03.044
    23 https://doi.org/10.1016/j.physa.2017.11.089
    24 https://doi.org/10.1016/j.physrep.2009.11.002
    25 https://doi.org/10.1016/j.procs.2016.08.103
    26 https://doi.org/10.1073/pnas.0601602103
    27 https://doi.org/10.1073/pnas.0605965104
    28 https://doi.org/10.1073/pnas.0611034104
    29 https://doi.org/10.1073/pnas.122653799
    30 https://doi.org/10.1086/jar.33.4.3629752
    31 https://doi.org/10.1088/1742-5468/2005/09/p09008
    32 https://doi.org/10.1088/1742-5468/2008/10/p10008
    33 https://doi.org/10.1103/physreve.67.026112
    34 https://doi.org/10.1103/physreve.69.026113
    35 https://doi.org/10.1103/physreve.70.056122
    36 https://doi.org/10.1103/physreve.70.066111
    37 https://doi.org/10.1103/physreve.72.027104
    38 https://doi.org/10.1103/physreve.74.036104
    39 https://doi.org/10.1103/physreve.76.036102
    40 https://doi.org/10.1103/physreve.80.036111
    41 https://doi.org/10.1103/physreve.81.016103
    42 https://doi.org/10.1109/codit.2017.8102624
    43 https://doi.org/10.1109/icrito.2015.7359276
    44 https://doi.org/10.1109/setit.2016.7939902
    45 https://doi.org/10.1109/tpds.2015.2390633
    46 https://doi.org/10.1111/j.1467-985x.2010.00646_6.x
    47 https://doi.org/10.1145/2501654.2501657
    48 https://doi.org/10.1145/2908812.2908818
    49 https://doi.org/10.1145/3110025.3110125
    50 https://doi.org/10.14257/ijdta.2016.9.6.21
    51 https://doi.org/10.1504/ijbic.2016.076329
    52 https://doi.org/10.26599/tst.2018.9010053
    53 https://doi.org/10.3390/sym9050062
    54 schema:datePublished 2019-02-08
    55 schema:datePublishedReg 2019-02-08
    56 schema:description As the massive size of contemporary social networks poses a serious challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities, we develop, in this manuscript, an approach used to discover hierarchical community structure in large networks. The introduced hybrid technique combines the strengths of bottom-up hierarchical clustering method with that of top-down hierarchical clustering. In fact, the first approach is efficient in identifying small clusters, while the second one is good at determining large ones. Our mixed hierarchical clustering technique, based on the assumption that there exists an initial solution composed of k classes and the combination of the two previously mentioned methods, does not the change of the number of partitions, modifies the repartition of the initial classes. At the end of the introduced clustering process, a fixed point, representing a local optimum of the cost function which measures the degree of importance between two partitions, is obtained. Consequently, the introduced combined model leads to the emergence of local community structure. To avoid this local optimum and detect community structure converged to the global optimum of the cost function, the detection of community structures, in this study, is not considered only as a clustering problem, but as an optimization issue. Besides, a novel mixed hierarchical clustering algorithm based on swarms intelligence is suggested for identifying community structures in social networks. In order to validate the proposed method, performances of the introduced approach are evaluated using both real and artificial networks as well as internal and external clustering evaluation criteria.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf sg:journal.1041769
    61 schema:name An approach based on mixed hierarchical clustering and optimization for graph analysis in social media network: toward globally hierarchical community structure
    62 schema:pagination 1-41
    63 schema:productId N3879ebc87f2b42b5b34e57b3bab347b2
    64 N3cc5a20926af48b0b064a2f5eed90936
    65 N87a5f92d5ec54b608c171218d2b1e6c5
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111982554
    67 https://doi.org/10.1007/s10115-019-01329-2
    68 schema:sdDatePublished 2019-04-11T09:03
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nc547761281494f65bb17fb79b4a3ffe7
    71 schema:url https://link.springer.com/10.1007%2Fs10115-019-01329-2
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N1fec60fc87154d72b9e75795dd95b13e schema:affiliation https://www.grid.ac/institutes/grid.265234.4
    76 schema:familyName Toujani
    77 schema:givenName Radhia
    78 rdf:type schema:Person
    79 N3879ebc87f2b42b5b34e57b3bab347b2 schema:name doi
    80 schema:value 10.1007/s10115-019-01329-2
    81 rdf:type schema:PropertyValue
    82 N3cc5a20926af48b0b064a2f5eed90936 schema:name readcube_id
    83 schema:value 5f21639dcd0f9af7971b5209d6d9c41215fdd0f32d199c4541228f0217aa72fc
    84 rdf:type schema:PropertyValue
    85 N87a5f92d5ec54b608c171218d2b1e6c5 schema:name dimensions_id
    86 schema:value pub.1111982554
    87 rdf:type schema:PropertyValue
    88 Nc547761281494f65bb17fb79b4a3ffe7 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Nd33e375fdf144229a80cdb16b535206b rdf:first N1fec60fc87154d72b9e75795dd95b13e
    91 rdf:rest Ne7bda7d14799487c9035656b93ca8c48
    92 Ne7bda7d14799487c9035656b93ca8c48 rdf:first Nec4470aad74e43f381459e95aef2c834
    93 rdf:rest rdf:nil
    94 Nec4470aad74e43f381459e95aef2c834 schema:affiliation https://www.grid.ac/institutes/grid.494608.7
    95 schema:familyName Akaichi
    96 schema:givenName Jalel
    97 rdf:type schema:Person
    98 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Studies in Human Society
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Sociology
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1041769 schema:issn 0219-1377
    105 0219-3116
    106 schema:name Knowledge and Information Systems
    107 rdf:type schema:Periodical
    108 sg:pub.10.1007/11569596_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004698403
    109 https://doi.org/10.1007/11569596_31
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-1-4419-8462-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046012400
    112 https://doi.org/10.1007/978-1-4419-8462-3_1
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-540-72909-9_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043989980
    115 https://doi.org/10.1007/978-3-540-72909-9_33
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00191-011-0240-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051209484
    118 https://doi.org/10.1007/s00191-011-0240-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00265-003-0651-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345051
    121 https://doi.org/10.1007/s00265-003-0651-y
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s10618-011-0224-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017664270
    124 https://doi.org/10.1007/s10618-011-0224-z
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s13278-012-0050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007806978
    127 https://doi.org/10.1007/s13278-012-0050-3
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/nature09182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936185
    130 https://doi.org/10.1038/nature09182
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/srep30750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023359647
    133 https://doi.org/10.1038/srep30750
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1140/epjb/e2004-00124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007257290
    136 https://doi.org/10.1140/epjb/e2004-00124-y
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1002/asi.20591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030734435
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1002/bies.20820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044445556
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.csda.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011250070
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.eswa.2017.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699557
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.future.2016.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930170
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.knosys.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332108
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.knosys.2016.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009029287
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.knosys.2018.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104127815
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.physa.2015.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004544788
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.physa.2017.11.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092869243
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.procs.2016.08.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013531673
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1073/pnas.0611034104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006029486
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1086/jar.33.4.3629752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058909178
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1088/1742-5468/2005/09/p09008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878564
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physreve.67.026112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008006377
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physreve.70.056122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732187
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physreve.72.027104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005495710
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physreve.74.036104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120999
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physreve.76.036102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008670010
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physreve.80.036111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003126434
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physreve.81.016103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006270814
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1109/codit.2017.8102624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094870445
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/icrito.2015.7359276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093928777
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1109/setit.2016.7939902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094667247
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1109/tpds.2015.2390633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061754807
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1111/j.1467-985x.2010.00646_6.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053379675
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1145/2501654.2501657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050727578
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1145/2908812.2908818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846228
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1145/3110025.3110125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092753185
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.14257/ijdta.2016.9.6.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067233578
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1504/ijbic.2016.076329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067436949
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.26599/tst.2018.9010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101079786
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.3390/sym9050062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085057089
    217 rdf:type schema:CreativeWork
    218 https://www.grid.ac/institutes/grid.265234.4 schema:alternateName Tunis University
    219 schema:name BESTMOD Department, Higher Institute of Management, University of Tunis, Tunis, Tunisia
    220 rdf:type schema:Organization
    221 https://www.grid.ac/institutes/grid.494608.7 schema:alternateName University of Bisha
    222 schema:name College of Computer Science, University of Bisha, Bisha, Saudi Arabia
    223 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...