Instance reduction for one-class classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Bartosz Krawczyk, Isaac Triguero, Salvador García, Michał Woźniak, Francisco Herrera

ABSTRACT

Instance reduction techniques are data preprocessing methods originally developed to enhance the nearest neighbor rule for standard classification. They reduce the training data by selecting or generating representative examples of a given problem. These algorithms have been designed and widely analyzed in multi-class problems providing very competitive results. However, this issue was rarely addressed in the context of one-class classification. In this specific domain a reduction of the training set may not only decrease the classification time and classifier’s complexity, but also allows us to handle internal noisy data and simplify the data description boundary. We propose two methods for achieving this goal. The first one is a flexible framework that adjusts any instance reduction method to one-class scenario by introduction of meaningful artificial outliers. The second one is a novel modification of evolutionary instance reduction technique that is based on differential evolution and uses consistency measure for model evaluation in filter or wrapper modes. It is a powerful native one-class solution that does not require an access to counterexamples. Both of the proposed algorithms can be applied to any type of one-class classifier. On the basis of extensive computational experiments, we show that the proposed methods are highly efficient techniques to reduce the complexity and improve the classification performance in one-class scenarios. More... »

PAGES

601-628

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-018-1220-z

DOI

http://dx.doi.org/10.1007/s10115-018-1220-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104139542


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Commonwealth University", 
          "id": "https://www.grid.ac/institutes/grid.224260.0", 
          "name": [
            "Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krawczyk", 
        "givenName": "Bartosz", 
        "id": "sg:person.01177173425.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177173425.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "School of Computer Science, Automated Scheduling, Optimisation and Planning (ASAP) Group, University of Nottingham, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Triguero", 
        "givenName": "Isaac", 
        "id": "sg:person.014762205115.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014762205115.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Salvador", 
        "id": "sg:person.01221271101.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221271101.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wroc\u0142aw University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7005.2", 
          "name": [
            "Department of Systems and Computer Networks, Wroc\u0142aw University of Technology, Wroc\u0142aw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wo\u017aniak", 
        "givenName": "Micha\u0142", 
        "id": "sg:person.012330436473.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330436473.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada, Spain", 
            "Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrera", 
        "givenName": "Francisco", 
        "id": "sg:person.011360734641.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360734641.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.inffus.2015.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002525100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005940083", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-21858-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005940083", 
          "https://doi.org/10.1007/978-3-319-21858-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-21858-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005940083", 
          "https://doi.org/10.1007/978-3-319-21858-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006957188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2013.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007208651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008415958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008566262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2014.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011590884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011869319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011928454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013824384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(95)00120-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014860265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016559558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017165944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017723216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0375-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571231", 
          "https://doi.org/10.1007/s10115-010-0375-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02172-5_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021635962", 
          "https://doi.org/10.1007/978-3-642-02172-5_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02172-5_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021635962", 
          "https://doi.org/10.1007/978-3-642-02172-5_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000008084.60811.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023309467", 
          "https://doi.org/10.1023/b:mach.0000008084.60811.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2011.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023364127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007626913721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030839762", 
          "https://doi.org/10.1023/a:1007626913721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12293-009-0008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031789481", 
          "https://doi.org/10.1007/s12293-009-0008-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87479-9_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032120179", 
          "https://doi.org/10.1007/978-3-540-87479-9_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-011-0304-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035844896", 
          "https://doi.org/10.1007/s10851-011-0304-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037745187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-015-1907-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037941199", 
          "https://doi.org/10.1007/s00500-015-1907-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19324-3_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039399403", 
          "https://doi.org/10.1007/978-3-319-19324-3_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.04.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042786159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1976.4309452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044229856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.2009.17.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044453908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046888712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00153759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631378", 
          "https://doi.org/10.1007/bf00153759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00153759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631378", 
          "https://doi.org/10.1007/bf00153759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052067354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.07.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052558977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053699765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2487318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061580122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2003.819265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.872133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2059031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2087415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1023804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1972.4309137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2010.2103939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.01.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083821627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1334542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093495921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2014.6900469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093569470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2014.6889429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094217770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.2011.6083797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095067946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095117481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0003684002770282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099545219"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "Instance reduction techniques are data preprocessing methods originally developed to enhance the nearest neighbor rule for standard classification. They reduce the training data by selecting or generating representative examples of a given problem. These algorithms have been designed and widely analyzed in multi-class problems providing very competitive results. However, this issue was rarely addressed in the context of one-class classification. In this specific domain a reduction of the training set may not only decrease the classification time and classifier\u2019s complexity, but also allows us to handle internal noisy data and simplify the data description boundary. We propose two methods for achieving this goal. The first one is a flexible framework that adjusts any instance reduction method to one-class scenario by introduction of meaningful artificial outliers. The second one is a novel modification of evolutionary instance reduction technique that is based on differential evolution and uses consistency measure for model evaluation in filter or wrapper modes. It is a powerful native one-class solution that does not require an access to counterexamples. Both of the proposed algorithms can be applied to any type of one-class classifier. On the basis of extensive computational experiments, we show that the proposed methods are highly efficient techniques to reduce the complexity and improve the classification performance in one-class scenarios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-018-1220-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7404323", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Instance reduction for one-class classification", 
    "pagination": "601-628", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0a25d92298cd7e8096e3652a90098d1686ae104bb2db57ac18aaee1e11a9c40"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-018-1220-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104139542"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-018-1220-z", 
      "https://app.dimensions.ai/details/publication/pub.1104139542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72843_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10115-018-1220-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1220-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1220-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1220-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1220-z'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      80 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-018-1220-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne2f0a1a853d445ae83b139af1ec2eee2
4 schema:citation sg:pub.10.1007/978-3-319-19324-3_43
5 sg:pub.10.1007/978-3-319-21858-8
6 sg:pub.10.1007/978-3-540-87479-9_51
7 sg:pub.10.1007/978-3-642-02172-5_57
8 sg:pub.10.1007/bf00153759
9 sg:pub.10.1007/s00500-015-1907-y
10 sg:pub.10.1007/s10115-010-0375-z
11 sg:pub.10.1007/s10851-011-0304-0
12 sg:pub.10.1007/s12293-009-0008-9
13 sg:pub.10.1023/a:1007626913721
14 sg:pub.10.1023/b:mach.0000008084.60811.49
15 https://app.dimensions.ai/details/publication/pub.1005940083
16 https://doi.org/10.1016/0893-6080(95)00120-4
17 https://doi.org/10.1016/j.inffus.2013.04.006
18 https://doi.org/10.1016/j.inffus.2015.06.005
19 https://doi.org/10.1016/j.ins.2009.12.010
20 https://doi.org/10.1016/j.knosys.2014.04.021
21 https://doi.org/10.1016/j.knosys.2015.12.006
22 https://doi.org/10.1016/j.neucom.2008.05.003
23 https://doi.org/10.1016/j.neucom.2011.02.023
24 https://doi.org/10.1016/j.neucom.2013.07.002
25 https://doi.org/10.1016/j.neucom.2014.04.078
26 https://doi.org/10.1016/j.neucom.2014.07.068
27 https://doi.org/10.1016/j.neucom.2015.03.051
28 https://doi.org/10.1016/j.neucom.2017.01.078
29 https://doi.org/10.1016/j.patcog.2008.02.006
30 https://doi.org/10.1016/j.patcog.2008.07.004
31 https://doi.org/10.1016/j.patcog.2010.01.006
32 https://doi.org/10.1016/j.patcog.2010.10.020
33 https://doi.org/10.1016/j.patcog.2014.10.001
34 https://doi.org/10.1016/j.patcog.2015.06.001
35 https://doi.org/10.1016/j.patcog.2015.09.016
36 https://doi.org/10.1016/j.patcog.2015.11.006
37 https://doi.org/10.1016/j.patrec.2011.04.013
38 https://doi.org/10.1109/cec.2014.6900469
39 https://doi.org/10.1109/cvpr.2014.483
40 https://doi.org/10.1109/icpr.2004.1334542
41 https://doi.org/10.1109/icsmc.2011.6083797
42 https://doi.org/10.1109/ijcnn.2014.6889429
43 https://doi.org/10.1109/tcyb.2015.2487318
44 https://doi.org/10.1109/tevc.2003.819265
45 https://doi.org/10.1109/tevc.2006.872133
46 https://doi.org/10.1109/tevc.2010.2059031
47 https://doi.org/10.1109/tit.1967.1053964
48 https://doi.org/10.1109/tnn.2010.2087415
49 https://doi.org/10.1109/tpami.2002.1023804
50 https://doi.org/10.1109/tpami.2011.142
51 https://doi.org/10.1109/tpami.2011.204
52 https://doi.org/10.1109/tsmc.1972.4309137
53 https://doi.org/10.1109/tsmc.1976.4309452
54 https://doi.org/10.1109/tsmcc.2010.2103939
55 https://doi.org/10.1162/evco.2009.17.3.275
56 https://doi.org/10.5220/0003684002770282
57 schema:datePublished 2019-06
58 schema:datePublishedReg 2019-06-01
59 schema:description Instance reduction techniques are data preprocessing methods originally developed to enhance the nearest neighbor rule for standard classification. They reduce the training data by selecting or generating representative examples of a given problem. These algorithms have been designed and widely analyzed in multi-class problems providing very competitive results. However, this issue was rarely addressed in the context of one-class classification. In this specific domain a reduction of the training set may not only decrease the classification time and classifier’s complexity, but also allows us to handle internal noisy data and simplify the data description boundary. We propose two methods for achieving this goal. The first one is a flexible framework that adjusts any instance reduction method to one-class scenario by introduction of meaningful artificial outliers. The second one is a novel modification of evolutionary instance reduction technique that is based on differential evolution and uses consistency measure for model evaluation in filter or wrapper modes. It is a powerful native one-class solution that does not require an access to counterexamples. Both of the proposed algorithms can be applied to any type of one-class classifier. On the basis of extensive computational experiments, we show that the proposed methods are highly efficient techniques to reduce the complexity and improve the classification performance in one-class scenarios.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf N66fa66b807024c2e9d937ab34e53c804
64 Na83fad6ca8114694ab43850a8e103c0e
65 sg:journal.1041769
66 schema:name Instance reduction for one-class classification
67 schema:pagination 601-628
68 schema:productId N0859eb025c32421f948d9bd295761636
69 N16bb0e279032465a9e8fe8c73afe1472
70 Ndafc7eec30ce4114bfa80fb9d47412cb
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104139542
72 https://doi.org/10.1007/s10115-018-1220-z
73 schema:sdDatePublished 2019-04-11T12:53
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N2d8bc0595cba41bcbe9796e6cd8af254
76 schema:url https://link.springer.com/10.1007%2Fs10115-018-1220-z
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0859eb025c32421f948d9bd295761636 schema:name doi
81 schema:value 10.1007/s10115-018-1220-z
82 rdf:type schema:PropertyValue
83 N16bb0e279032465a9e8fe8c73afe1472 schema:name dimensions_id
84 schema:value pub.1104139542
85 rdf:type schema:PropertyValue
86 N2d8bc0595cba41bcbe9796e6cd8af254 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N470f77b3648b4a03b0721472377814ce rdf:first sg:person.01221271101.39
89 rdf:rest Ne263e34b91264509a4683080bd657b96
90 N66fa66b807024c2e9d937ab34e53c804 schema:volumeNumber 59
91 rdf:type schema:PublicationVolume
92 Na83fad6ca8114694ab43850a8e103c0e schema:issueNumber 3
93 rdf:type schema:PublicationIssue
94 Nd4fdba9f51c440678f232d670388f666 rdf:first sg:person.011360734641.33
95 rdf:rest rdf:nil
96 Ndafc7eec30ce4114bfa80fb9d47412cb schema:name readcube_id
97 schema:value e0a25d92298cd7e8096e3652a90098d1686ae104bb2db57ac18aaee1e11a9c40
98 rdf:type schema:PropertyValue
99 Ne263e34b91264509a4683080bd657b96 rdf:first sg:person.012330436473.90
100 rdf:rest Nd4fdba9f51c440678f232d670388f666
101 Ne2f0a1a853d445ae83b139af1ec2eee2 rdf:first sg:person.01177173425.07
102 rdf:rest Nfc2b0ea67ef54d9b8bb1558dd224f01d
103 Nfc2b0ea67ef54d9b8bb1558dd224f01d rdf:first sg:person.014762205115.75
104 rdf:rest N470f77b3648b4a03b0721472377814ce
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:grant.7404323 http://pending.schema.org/fundedItem sg:pub.10.1007/s10115-018-1220-z
112 rdf:type schema:MonetaryGrant
113 sg:journal.1041769 schema:issn 0219-1377
114 0219-3116
115 schema:name Knowledge and Information Systems
116 rdf:type schema:Periodical
117 sg:person.011360734641.33 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
118 schema:familyName Herrera
119 schema:givenName Francisco
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360734641.33
121 rdf:type schema:Person
122 sg:person.01177173425.07 schema:affiliation https://www.grid.ac/institutes/grid.224260.0
123 schema:familyName Krawczyk
124 schema:givenName Bartosz
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177173425.07
126 rdf:type schema:Person
127 sg:person.01221271101.39 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
128 schema:familyName García
129 schema:givenName Salvador
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221271101.39
131 rdf:type schema:Person
132 sg:person.012330436473.90 schema:affiliation https://www.grid.ac/institutes/grid.7005.2
133 schema:familyName Woźniak
134 schema:givenName Michał
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330436473.90
136 rdf:type schema:Person
137 sg:person.014762205115.75 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
138 schema:familyName Triguero
139 schema:givenName Isaac
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014762205115.75
141 rdf:type schema:Person
142 sg:pub.10.1007/978-3-319-19324-3_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039399403
143 https://doi.org/10.1007/978-3-319-19324-3_43
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-319-21858-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005940083
146 https://doi.org/10.1007/978-3-319-21858-8
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-540-87479-9_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032120179
149 https://doi.org/10.1007/978-3-540-87479-9_51
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-642-02172-5_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021635962
152 https://doi.org/10.1007/978-3-642-02172-5_57
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00153759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631378
155 https://doi.org/10.1007/bf00153759
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00500-015-1907-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037941199
158 https://doi.org/10.1007/s00500-015-1907-y
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10115-010-0375-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020571231
161 https://doi.org/10.1007/s10115-010-0375-z
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10851-011-0304-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035844896
164 https://doi.org/10.1007/s10851-011-0304-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s12293-009-0008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031789481
167 https://doi.org/10.1007/s12293-009-0008-9
168 rdf:type schema:CreativeWork
169 sg:pub.10.1023/a:1007626913721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030839762
170 https://doi.org/10.1023/a:1007626913721
171 rdf:type schema:CreativeWork
172 sg:pub.10.1023/b:mach.0000008084.60811.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023309467
173 https://doi.org/10.1023/b:mach.0000008084.60811.49
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1005940083 schema:CreativeWork
176 https://doi.org/10.1016/0893-6080(95)00120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014860265
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.inffus.2013.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007208651
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.inffus.2015.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525100
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ins.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008415958
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.knosys.2014.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052067354
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.knosys.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053699765
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.neucom.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016559558
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neucom.2011.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011869319
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.neucom.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006957188
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.neucom.2014.04.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042786159
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.neucom.2014.07.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052558977
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.neucom.2015.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023587677
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.neucom.2017.01.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083821627
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.patcog.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011928454
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.patcog.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013824384
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.patcog.2010.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017723216
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.patcog.2010.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017165944
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.patcog.2014.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011590884
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.patcog.2015.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046888712
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.patcog.2015.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008566262
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.patcog.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037745187
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.patrec.2011.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364127
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/cec.2014.6900469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093569470
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/cvpr.2014.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095117481
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/icpr.2004.1334542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093495921
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/icsmc.2011.6083797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095067946
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/ijcnn.2014.6889429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094217770
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/tcyb.2015.2487318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580122
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/tevc.2003.819265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604611
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tevc.2006.872133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604743
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/tevc.2010.2059031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605002
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tnn.2010.2087415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717801
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tpami.2002.1023804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742406
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/tpami.2011.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744037
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1109/tpami.2011.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744090
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1109/tsmc.1972.4309137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792625
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/tsmc.1976.4309452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044229856
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tsmcc.2010.2103939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798312
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1162/evco.2009.17.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044453908
255 rdf:type schema:CreativeWork
256 https://doi.org/10.5220/0003684002770282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099545219
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.224260.0 schema:alternateName Virginia Commonwealth University
259 schema:name Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
262 schema:name Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada, Spain
263 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
266 schema:name Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada, Spain
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
269 schema:name School of Computer Science, Automated Scheduling, Optimisation and Planning (ASAP) Group, University of Nottingham, Nottingham, UK
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.7005.2 schema:alternateName Wrocław University of Technology
272 schema:name Department of Systems and Computer Networks, Wrocław University of Technology, Wrocław, Poland
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...