A novel page clipping search engine based on page discussion topics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Lin-Chih Chen

ABSTRACT

In this paper, we propose a page clipping search engine based on page discussion topics. Compared to other search engines, our search engine uses the page discussion topic instead of the search engine results page as the main result. After the user selects the topic of interest, our search engine will clip the relevant pages according to the selected topic and produce an integrated page result. The advantage of this topic-based integration page result is that the user can reduce the time it takes to decide whether the page content is relevant. Our results consist of two parts: the query-related discussion topics and the clipping results for relevant pages. We first use an adjusted N-gram language model and a hash method to produce discussion topics. At the same time, we use the idea of binary coding and mathematical set to organize related topics into a hierarchical topic tree with parent–child relationship. Next, we use a cost-effective genetic algorithm to produce the relevant page clipping results. This study has the following three advantages. The first is that we can find multiple clustering relationships, that is, a child topic can appear simultaneously in multiple parent topics. The second is that we propose a good topic generation method, that is, we cannot only produce better quality topics, but also produce the topic tree in a linear time. The third is that we propose a good clipping generation method, that is, we cannot only produce better quality clippings, but also produce a cost-effective solution. More... »

PAGES

525-550

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-018-1173-2

DOI

http://dx.doi.org/10.1007/s10115-018-1173-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101127392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Dong Hwa University", 
          "id": "https://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of Information Management, National Dong Hwa University, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lin-Chih", 
        "id": "sg:person.015713027613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015713027613.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2124295.2124324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002892428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1541880.1541884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003098366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.08.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003959722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080216030124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004169830", 
          "https://doi.org/10.1134/s1995080216030124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/10662240510615182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005583935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-009-0250-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007882544", 
          "https://doi.org/10.1007/s10115-009-0250-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-009-0250-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007882544", 
          "https://doi.org/10.1007/s10115-009-0250-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-009-0250-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007882544", 
          "https://doi.org/10.1007/s10115-009-0250-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10791-013-9221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008218096", 
          "https://doi.org/10.1007/s10791-013-9221-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008687915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/spe.829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014857180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-012-0607-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014988533", 
          "https://doi.org/10.1007/s10115-012-0607-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018866462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018866462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-013-0618-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024987263", 
          "https://doi.org/10.1007/s10115-013-0618-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378881.378888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025347877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-4571(2000)9999:9999<::aid-asi1591>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027258729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027378055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/14684521111161963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030268020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2010.01.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031378617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101150200001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032261925", 
          "https://doi.org/10.1007/s101150200001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2008.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040898941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1286(99)00054-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043337535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.is.2004.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045671108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/brm.41.3.647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046016271", 
          "https://doi.org/10.3758/brm.41.3.647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2012.2191029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2010.2065247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061773514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrs.2015.2439579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061780029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2214382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12785/amis/080129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064668711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/1493-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072597196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5121/ijcses.2012.3407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072616167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5923/j.ac.20110101.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073507667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ngct.2015.7375237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093792733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pacc.2011.5979059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093873382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wkdd.2010.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095186141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In this paper, we propose a page clipping search engine based on page discussion topics. Compared to other search engines, our search engine uses the page discussion topic instead of the search engine results page as the main result. After the user selects the topic of interest, our search engine will clip the relevant pages according to the selected topic and produce an integrated page result. The advantage of this topic-based integration page result is that the user can reduce the time it takes to decide whether the page content is relevant. Our results consist of two parts: the query-related discussion topics and the clipping results for relevant pages. We first use an adjusted N-gram language model and a hash method to produce discussion topics. At the same time, we use the idea of binary coding and mathematical set to organize related topics into a hierarchical topic tree with parent\u2013child relationship. Next, we use a cost-effective genetic algorithm to produce the relevant page clipping results. This study has the following three advantages. The first is that we can find multiple clustering relationships, that is, a child topic can appear simultaneously in multiple parent topics. The second is that we propose a good topic generation method, that is, we cannot only produce better quality topics, but also produce the topic tree in a linear time. The third is that we propose a good clipping generation method, that is, we cannot only produce better quality clippings, but also produce a cost-effective solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-018-1173-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "A novel page clipping search engine based on page discussion topics", 
    "pagination": "525-550", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78db036789cdf1d0e2b646bf8cf79d54db22b5902cc45e4ff5e4098f9b936626"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-018-1173-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101127392"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-018-1173-2", 
      "https://app.dimensions.ai/details/publication/pub.1101127392"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10115-018-1173-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1173-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1173-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1173-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-018-1173-2'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-018-1173-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf86376bbb3b141b49e1a8d6c94af192b
4 schema:citation sg:pub.10.1007/s10115-009-0250-y
5 sg:pub.10.1007/s10115-012-0607-5
6 sg:pub.10.1007/s10115-013-0618-x
7 sg:pub.10.1007/s101150200001
8 sg:pub.10.1007/s10791-013-9221-8
9 sg:pub.10.1134/s1995080216030124
10 sg:pub.10.3758/brm.41.3.647
11 https://doi.org/10.1002/1097-4571(2000)9999:9999<::aid-asi1591>3.0.co;2-r
12 https://doi.org/10.1002/spe.829
13 https://doi.org/10.1016/j.amc.2010.01.106
14 https://doi.org/10.1016/j.compeleceng.2008.11.022
15 https://doi.org/10.1016/j.engappai.2007.06.001
16 https://doi.org/10.1016/j.eswa.2005.09.024
17 https://doi.org/10.1016/j.eswa.2010.08.126
18 https://doi.org/10.1016/j.is.2004.04.002
19 https://doi.org/10.1016/j.knosys.2011.04.014
20 https://doi.org/10.1016/s1389-1286(99)00054-7
21 https://doi.org/10.1108/10662240510615182
22 https://doi.org/10.1108/14684521111161963
23 https://doi.org/10.1109/ngct.2015.7375237
24 https://doi.org/10.1109/pacc.2011.5979059
25 https://doi.org/10.1109/tbc.2012.2191029
26 https://doi.org/10.1109/tkde.2007.48
27 https://doi.org/10.1109/tpwrd.2010.2065247
28 https://doi.org/10.1109/tpwrs.2015.2439579
29 https://doi.org/10.1109/tsmcb.2012.2214382
30 https://doi.org/10.1109/wkdd.2010.123
31 https://doi.org/10.1145/1541880.1541884
32 https://doi.org/10.1145/2124295.2124324
33 https://doi.org/10.1145/378881.378888
34 https://doi.org/10.12785/amis/080129
35 https://doi.org/10.5120/1493-2010
36 https://doi.org/10.5121/ijcses.2012.3407
37 https://doi.org/10.5923/j.ac.20110101.02
38 schema:datePublished 2019-03
39 schema:datePublishedReg 2019-03-01
40 schema:description In this paper, we propose a page clipping search engine based on page discussion topics. Compared to other search engines, our search engine uses the page discussion topic instead of the search engine results page as the main result. After the user selects the topic of interest, our search engine will clip the relevant pages according to the selected topic and produce an integrated page result. The advantage of this topic-based integration page result is that the user can reduce the time it takes to decide whether the page content is relevant. Our results consist of two parts: the query-related discussion topics and the clipping results for relevant pages. We first use an adjusted N-gram language model and a hash method to produce discussion topics. At the same time, we use the idea of binary coding and mathematical set to organize related topics into a hierarchical topic tree with parent–child relationship. Next, we use a cost-effective genetic algorithm to produce the relevant page clipping results. This study has the following three advantages. The first is that we can find multiple clustering relationships, that is, a child topic can appear simultaneously in multiple parent topics. The second is that we propose a good topic generation method, that is, we cannot only produce better quality topics, but also produce the topic tree in a linear time. The third is that we propose a good clipping generation method, that is, we cannot only produce better quality clippings, but also produce a cost-effective solution.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf Nbfcf6dcc3ff1467daacd0e03156f2f9b
45 Nd22f4af9843c4ea7881e623f0578f08c
46 sg:journal.1041769
47 schema:name A novel page clipping search engine based on page discussion topics
48 schema:pagination 525-550
49 schema:productId N2dc0fa0839614ce599f8c9ee1045ab0f
50 N6bf1e3ea849a4b0db0dc8b9efc88e0e6
51 N9a7e133219a145c1b6a185fad403b070
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127392
53 https://doi.org/10.1007/s10115-018-1173-2
54 schema:sdDatePublished 2019-04-11T10:38
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nff348d9a4904474da3caaaf96b8e20af
57 schema:url https://link.springer.com/10.1007%2Fs10115-018-1173-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N2dc0fa0839614ce599f8c9ee1045ab0f schema:name readcube_id
62 schema:value 78db036789cdf1d0e2b646bf8cf79d54db22b5902cc45e4ff5e4098f9b936626
63 rdf:type schema:PropertyValue
64 N6bf1e3ea849a4b0db0dc8b9efc88e0e6 schema:name dimensions_id
65 schema:value pub.1101127392
66 rdf:type schema:PropertyValue
67 N9a7e133219a145c1b6a185fad403b070 schema:name doi
68 schema:value 10.1007/s10115-018-1173-2
69 rdf:type schema:PropertyValue
70 Nbfcf6dcc3ff1467daacd0e03156f2f9b schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 Nd22f4af9843c4ea7881e623f0578f08c schema:volumeNumber 58
73 rdf:type schema:PublicationVolume
74 Nf86376bbb3b141b49e1a8d6c94af192b rdf:first sg:person.015713027613.04
75 rdf:rest rdf:nil
76 Nff348d9a4904474da3caaaf96b8e20af schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1041769 schema:issn 0219-1377
85 0219-3116
86 schema:name Knowledge and Information Systems
87 rdf:type schema:Periodical
88 sg:person.015713027613.04 schema:affiliation https://www.grid.ac/institutes/grid.260567.0
89 schema:familyName Chen
90 schema:givenName Lin-Chih
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015713027613.04
92 rdf:type schema:Person
93 sg:pub.10.1007/s10115-009-0250-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007882544
94 https://doi.org/10.1007/s10115-009-0250-y
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10115-012-0607-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014988533
97 https://doi.org/10.1007/s10115-012-0607-5
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10115-013-0618-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024987263
100 https://doi.org/10.1007/s10115-013-0618-x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s101150200001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032261925
103 https://doi.org/10.1007/s101150200001
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10791-013-9221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218096
106 https://doi.org/10.1007/s10791-013-9221-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s1995080216030124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004169830
109 https://doi.org/10.1134/s1995080216030124
110 rdf:type schema:CreativeWork
111 sg:pub.10.3758/brm.41.3.647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046016271
112 https://doi.org/10.3758/brm.41.3.647
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/1097-4571(2000)9999:9999<::aid-asi1591>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258729
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/spe.829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014857180
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.amc.2010.01.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031378617
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compeleceng.2008.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040898941
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.engappai.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008687915
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.eswa.2005.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018866462
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.eswa.2010.08.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003959722
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.is.2004.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045671108
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.knosys.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027378055
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s1389-1286(99)00054-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043337535
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1108/10662240510615182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005583935
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1108/14684521111161963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030268020
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/ngct.2015.7375237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093792733
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/pacc.2011.5979059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093873382
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tbc.2012.2191029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522228
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tkde.2007.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661815
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tpwrd.2010.2065247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773514
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tpwrs.2015.2439579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061780029
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tsmcb.2012.2214382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797549
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/wkdd.2010.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095186141
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/1541880.1541884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003098366
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/2124295.2124324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002892428
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1145/378881.378888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025347877
159 rdf:type schema:CreativeWork
160 https://doi.org/10.12785/amis/080129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064668711
161 rdf:type schema:CreativeWork
162 https://doi.org/10.5120/1493-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072597196
163 rdf:type schema:CreativeWork
164 https://doi.org/10.5121/ijcses.2012.3407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072616167
165 rdf:type schema:CreativeWork
166 https://doi.org/10.5923/j.ac.20110101.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073507667
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.260567.0 schema:alternateName National Dong Hwa University
169 schema:name Department of Information Management, National Dong Hwa University, Hualien, Taiwan
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...