Domain-agnostic discovery of similarities and concepts at scale View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

Olof Görnerup, Daniel Gillblad, Theodore Vasiloudis

ABSTRACT

Appropriately defining and efficiently calculating similarities from large data sets are often essential in data mining, both for gaining understanding of data and generating processes and for building tractable representations. Given a set of objects and their correlations, we here rely on the premise that each object is characterized by its context, i.e., its correlations to the other objects. The similarity between two objects can then be expressed in terms of the similarity between their contexts. In this way, similarity pertains to the general notion that objects are similar if they are exchangeable in the data. We propose a scalable approach for calculating all relevant similarities among objects by relating them in a correlation graph that is transformed to a similarity graph. These graphs can express rich structural properties among objects. Specifically, we show that concepts—abstractions of objects—are constituted by groups of similar objects that can be discovered by clustering the objects in the similarity graph. These principles and methods are applicable in a wide range of fields and will be demonstrated here in three domains: computational linguistics, music, and molecular biology, where the numbers of objects and correlations range from small to very large. More... »

PAGES

531-560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-016-0984-2

DOI

http://dx.doi.org/10.1007/s10115-016-0984-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015567309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "Swedish Institute of Computer Science (SICS), 164 29, Kista, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6rnerup", 
        "givenName": "Olof", 
        "id": "sg:person.012451160263.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012451160263.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "Swedish Institute of Computer Science (SICS), 164 29, Kista, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gillblad", 
        "givenName": "Daniel", 
        "id": "sg:person.014641501663.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641501663.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "Swedish Institute of Computer Science (SICS), 164 29, Kista, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasiloudis", 
        "givenName": "Theodore", 
        "id": "sg:person.07531371463.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531371463.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.53.5.1161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004276358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/219717.219748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005662680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1199644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005783907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1989284.1989310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006233882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011466942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2901_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00437956.1954.11659520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014030787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.4630240406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014058264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msn232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016418628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/coli_a_00237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017369118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027366983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2333112.2333115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027400770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781444324044.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028019464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11280-010-0100-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031072884", 
          "https://doi.org/10.1007/s11280-010-0100-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298306.1298311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/319989.319991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040213608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800105.803397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042199745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.026120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042326900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.026120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042326900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2001.1800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045354190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-014-0357-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045392144", 
          "https://doi.org/10.1007/s00778-014-0357-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.5090140103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045420420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/371920.372094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045753153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1722149.1722154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049912148", 
          "https://doi.org/10.1007/978-3-642-13287-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049912148", 
          "https://doi.org/10.1007/978-3-642-13287-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.1912.tb05611.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052695319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/981623.981633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053495826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00639ed1v01y201504hlt027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069288521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2015.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094103026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2011.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095144983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098680729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "Appropriately defining and efficiently calculating similarities from large data sets are often essential in data mining, both for gaining understanding of data and generating processes and for building tractable representations. Given a set of objects and their correlations, we here rely on the premise that each object is characterized by its context, i.e., its correlations to the other objects. The similarity between two objects can then be expressed in terms of the similarity between their contexts. In this way, similarity pertains to the general notion that objects are similar if they are exchangeable in the data. We propose a scalable approach for calculating all relevant similarities among objects by relating them in a correlation graph that is transformed to a similarity graph. These graphs can express rich structural properties among objects. Specifically, we show that concepts\u2014abstractions of objects\u2014are constituted by groups of similar objects that can be discovered by clustering the objects in the similarity graph. These principles and methods are applicable in a wide range of fields and will be demonstrated here in three domains: computational linguistics, music, and molecular biology, where the numbers of objects and correlations range from small to very large.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-016-0984-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Domain-agnostic discovery of similarities and concepts at scale", 
    "pagination": "531-560", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a2b94a26a56ac517104a574223af7a7d7f0bfea473b201261db142daaa75252"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-016-0984-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015567309"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-016-0984-2", 
      "https://app.dimensions.ai/details/publication/pub.1015567309"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10115-016-0984-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0984-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0984-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0984-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0984-2'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-016-0984-2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N9632ff6cd9984fd39e3da2f0f06e9e04
4 schema:citation sg:pub.10.1007/978-3-642-13287-2
5 sg:pub.10.1007/s00778-014-0357-y
6 sg:pub.10.1007/s11280-010-0100-6
7 sg:pub.10.1038/30918
8 sg:pub.10.1038/nature03607
9 https://doi.org/10.1002/9781444324044.ch3
10 https://doi.org/10.1002/asi.4630240406
11 https://doi.org/10.1002/asi.5090140103
12 https://doi.org/10.1016/j.physrep.2009.11.002
13 https://doi.org/10.1017/cbo9780511976247
14 https://doi.org/10.1073/pnas.53.5.1161
15 https://doi.org/10.1080/00437956.1954.11659520
16 https://doi.org/10.1093/molbev/msh222
17 https://doi.org/10.1093/molbev/msn232
18 https://doi.org/10.1098/rspb.2001.1800
19 https://doi.org/10.1101/gr.1239303
20 https://doi.org/10.1103/physreve.73.026120
21 https://doi.org/10.1103/revmodphys.74.47
22 https://doi.org/10.1109/icdm.2015.85
23 https://doi.org/10.1109/icdmw.2011.154
24 https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
25 https://doi.org/10.1126/science.1073374
26 https://doi.org/10.1126/science.1199644
27 https://doi.org/10.1145/1298306.1298311
28 https://doi.org/10.1145/1722149.1722154
29 https://doi.org/10.1145/1989284.1989310
30 https://doi.org/10.1145/219717.219748
31 https://doi.org/10.1145/2333112.2333115
32 https://doi.org/10.1145/2339530.2339751
33 https://doi.org/10.1145/319989.319991
34 https://doi.org/10.1145/371920.372094
35 https://doi.org/10.1145/775047.775126
36 https://doi.org/10.1145/800105.803397
37 https://doi.org/10.1162/coli_a_00237
38 https://doi.org/10.1207/s15516709cog2901_3
39 https://doi.org/10.2200/s00639ed1v01y201504hlt027
40 https://doi.org/10.2202/1544-6115.1128
41 https://doi.org/10.2307/1932409
42 https://doi.org/10.3115/981623.981633
43 https://doi.org/10.3115/v1/d14-1162
44 schema:datePublished 2017-05
45 schema:datePublishedReg 2017-05-01
46 schema:description Appropriately defining and efficiently calculating similarities from large data sets are often essential in data mining, both for gaining understanding of data and generating processes and for building tractable representations. Given a set of objects and their correlations, we here rely on the premise that each object is characterized by its context, i.e., its correlations to the other objects. The similarity between two objects can then be expressed in terms of the similarity between their contexts. In this way, similarity pertains to the general notion that objects are similar if they are exchangeable in the data. We propose a scalable approach for calculating all relevant similarities among objects by relating them in a correlation graph that is transformed to a similarity graph. These graphs can express rich structural properties among objects. Specifically, we show that concepts—abstractions of objects—are constituted by groups of similar objects that can be discovered by clustering the objects in the similarity graph. These principles and methods are applicable in a wide range of fields and will be demonstrated here in three domains: computational linguistics, music, and molecular biology, where the numbers of objects and correlations range from small to very large.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N22b162f46fc8436384aabfc0f5bd8d11
51 Nf15d9c5a56d848ba86778432104739ba
52 sg:journal.1041769
53 schema:name Domain-agnostic discovery of similarities and concepts at scale
54 schema:pagination 531-560
55 schema:productId N5db4d6ea499b4f49b517464e4dd2551b
56 Na539c998fc2f477da6fa5f696f7a2049
57 Nf3cd7d0bf4484ce5bc174c7c5ae7b12c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015567309
59 https://doi.org/10.1007/s10115-016-0984-2
60 schema:sdDatePublished 2019-04-11T12:22
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nb931f84efbd343eb9894520149b1fb47
63 schema:url https://link.springer.com/10.1007%2Fs10115-016-0984-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N22b162f46fc8436384aabfc0f5bd8d11 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 N5db4d6ea499b4f49b517464e4dd2551b schema:name readcube_id
70 schema:value 4a2b94a26a56ac517104a574223af7a7d7f0bfea473b201261db142daaa75252
71 rdf:type schema:PropertyValue
72 N801575d1dd76418499204bc529ba0f22 rdf:first sg:person.07531371463.97
73 rdf:rest rdf:nil
74 N9632ff6cd9984fd39e3da2f0f06e9e04 rdf:first sg:person.012451160263.00
75 rdf:rest Neb1ec43baf734081aa553b2e7dcc5111
76 Na539c998fc2f477da6fa5f696f7a2049 schema:name dimensions_id
77 schema:value pub.1015567309
78 rdf:type schema:PropertyValue
79 Nb931f84efbd343eb9894520149b1fb47 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Neb1ec43baf734081aa553b2e7dcc5111 rdf:first sg:person.014641501663.70
82 rdf:rest N801575d1dd76418499204bc529ba0f22
83 Nf15d9c5a56d848ba86778432104739ba schema:volumeNumber 51
84 rdf:type schema:PublicationVolume
85 Nf3cd7d0bf4484ce5bc174c7c5ae7b12c schema:name doi
86 schema:value 10.1007/s10115-016-0984-2
87 rdf:type schema:PropertyValue
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information Systems
93 rdf:type schema:DefinedTerm
94 sg:journal.1041769 schema:issn 0219-1377
95 0219-3116
96 schema:name Knowledge and Information Systems
97 rdf:type schema:Periodical
98 sg:person.012451160263.00 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
99 schema:familyName Görnerup
100 schema:givenName Olof
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012451160263.00
102 rdf:type schema:Person
103 sg:person.014641501663.70 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
104 schema:familyName Gillblad
105 schema:givenName Daniel
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641501663.70
107 rdf:type schema:Person
108 sg:person.07531371463.97 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
109 schema:familyName Vasiloudis
110 schema:givenName Theodore
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531371463.97
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-642-13287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049912148
114 https://doi.org/10.1007/978-3-642-13287-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00778-014-0357-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045392144
117 https://doi.org/10.1007/s00778-014-0357-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11280-010-0100-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031072884
120 https://doi.org/10.1007/s11280-010-0100-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
123 https://doi.org/10.1038/30918
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
126 https://doi.org/10.1038/nature03607
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/9781444324044.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028019464
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/asi.4630240406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014058264
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/asi.5090140103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045420420
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/cbo9780511976247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098680729
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1073/pnas.53.5.1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004276358
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00437956.1954.11659520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014030787
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/molbev/msh222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027366983
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/molbev/msn232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016418628
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1098/rspb.2001.1800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045354190
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.73.026120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042326900
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icdm.2015.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094103026
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/icdmw.2011.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095144983
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1469-8137.1912.tb05611.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052695319
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1199644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005783907
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/1298306.1298311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500315
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/1722149.1722154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672039
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/1989284.1989310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006233882
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1145/219717.219748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005662680
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1145/2333112.2333115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027400770
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/2339530.2339751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029216
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/319989.319991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040213608
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/371920.372094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045753153
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/775047.775126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011466942
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/800105.803397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042199745
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1162/coli_a_00237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017369118
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1207/s15516709cog2901_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933522
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2200/s00639ed1v01y201504hlt027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288521
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2202/1544-6115.1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020363278
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3115/981623.981633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053495826
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3115/v1/d14-1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110523
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.6383.e schema:alternateName Swedish Institute of Computer Science
199 schema:name Swedish Institute of Computer Science (SICS), 164 29, Kista, Sweden
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...