Prediction of places of visit using tweets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

Arun Chauhan, Krishna Kummamuru, Durga Toshniwal

ABSTRACT

We study the problem of predicting likely places of visit of users using their past tweets. What people write on their microblogs reflects their intent and desire relating to most of their common day interests. Taking this as a strong evidence, we hypothesize that tweets of the person can also be treated as source of strong indicator signals for predicting their places of visits. In this paper, we propose a novel approach for predicting place of visit within a given geospatial range considering the past tweets and the time of visit. These predictions can be used for generating places recommendation or for promotions. In this approach, we analyze use of various features that can be extracted from the historical tweets—for example, personality traits estimated from the past tweets and the actual words mentioned in the tweets. We performed extensive empirical experiments involving, real data derived from twitter timelines of 4600 persons with multi-label classification as predictive model. The performances of proposed approach outperform the four baselines with accuracy reaching 90 % for top five predictions. Based on our experimental study, we come up with general guidelines on building the prediction model in terms of the type of features extracted from historical tweets, window size of historical tweets and on the optimal radius of query around the place of visit at a given time. More... »

PAGES

145-166

References to SciGraph publications

  • 2010-07-07. Mining Multi-label Data in DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10115-016-0936-x

    DOI

    http://dx.doi.org/10.1007/s10115-016-0936-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027781802


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Roorkee", 
              "id": "https://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Computer Science and Engineering Department, Indian Institute of Technology, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chauhan", 
            "givenName": "Arun", 
            "id": "sg:person.07660331065.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660331065.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - India", 
              "id": "https://www.grid.ac/institutes/grid.481550.d", 
              "name": [
                "IBM Research, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kummamuru", 
            "givenName": "Krishna", 
            "id": "sg:person.014521402563.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521402563.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Roorkee", 
              "id": "https://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Computer Science and Engineering Department, Indian Institute of Technology, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toshniwal", 
            "givenName": "Durga", 
            "id": "sg:person.011524652274.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524652274.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2484028.2484030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001797823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001852941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0073791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003618289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2645710.2645765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007206255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2507157.2507182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012884906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jocs.2010.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015168619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2124295.2124315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016824268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2623330.2623681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017004634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2487575.2487576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021556376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2645710.2645719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022259873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2145204.2145359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026085930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2424321.2424348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026091811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2512938.2512960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034017038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2370216.2370421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037196432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1772690.1772732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038868775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1963405.1963443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040906761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2449396.2449403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041845244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1316948.1316967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043210018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2531602.2531608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045007662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2661829.2661983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048591766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-09823-4_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048998511", 
              "https://doi.org/10.1007/978-0-387-09823-4_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-09823-4_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048998511", 
              "https://doi.org/10.1007/978-0-387-09823-4_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1202775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062464504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0261927x09351676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063782751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0261927x09351676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063782751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5210/fm.v12i9.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072709484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wi-iat.2010.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093851071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wi-iat.2013.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094516991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1699510.1699543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099201993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4108/icst.mobiquitous.2014.258092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099281261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4108/icst.mobiquitous.2014.258092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099281261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.4200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105689922"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01", 
        "datePublishedReg": "2017-01-01", 
        "description": "We study the problem of predicting likely places of visit of users using their past tweets. What people write on their microblogs reflects their intent and desire relating to most of their common day interests. Taking this as a strong evidence, we hypothesize that tweets of the person can also be treated as source of strong indicator signals for predicting their places of visits. In this paper, we propose a novel approach for predicting place of visit within a given geospatial range considering the past tweets and the time of visit. These predictions can be used for generating places recommendation or for promotions. In this approach, we analyze use of various features that can be extracted from the historical tweets\u2014for example, personality traits estimated from the past tweets and the actual words mentioned in the tweets. We performed extensive empirical experiments involving, real data derived from twitter timelines of 4600 persons with multi-label classification as predictive model. The performances of proposed approach outperform the four baselines with accuracy reaching 90 % for top five predictions. Based on our experimental study, we come up with general guidelines on building the prediction model in terms of the type of features extracted from historical tweets, window size of historical tweets and on the optimal radius of query around the place of visit at a given time.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10115-016-0936-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041769", 
            "issn": [
              "0219-1377", 
              "0219-3116"
            ], 
            "name": "Knowledge and Information Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "name": "Prediction of places of visit using tweets", 
        "pagination": "145-166", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "84584922c81c85d5fd06c330234180146e5d4cc4484982301ca4331214af6ff7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10115-016-0936-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027781802"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10115-016-0936-x", 
          "https://app.dimensions.ai/details/publication/pub.1027781802"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000588.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10115-016-0936-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0936-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0936-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0936-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0936-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10115-016-0936-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N70881c984898482880581a2bd2f6800f
    4 schema:citation sg:pub.10.1007/978-0-387-09823-4_34
    5 https://doi.org/10.1016/j.jocs.2010.12.007
    6 https://doi.org/10.1016/j.knosys.2015.06.010
    7 https://doi.org/10.1109/wi-iat.2010.63
    8 https://doi.org/10.1109/wi-iat.2013.144
    9 https://doi.org/10.1126/science.1202775
    10 https://doi.org/10.1145/1316948.1316967
    11 https://doi.org/10.1145/1772690.1772732
    12 https://doi.org/10.1145/1963405.1963443
    13 https://doi.org/10.1145/2124295.2124315
    14 https://doi.org/10.1145/2145204.2145359
    15 https://doi.org/10.1145/2370216.2370421
    16 https://doi.org/10.1145/2424321.2424348
    17 https://doi.org/10.1145/2449396.2449403
    18 https://doi.org/10.1145/2484028.2484030
    19 https://doi.org/10.1145/2487575.2487576
    20 https://doi.org/10.1145/2507157.2507182
    21 https://doi.org/10.1145/2512938.2512960
    22 https://doi.org/10.1145/2531602.2531608
    23 https://doi.org/10.1145/2623330.2623681
    24 https://doi.org/10.1145/2645710.2645719
    25 https://doi.org/10.1145/2645710.2645765
    26 https://doi.org/10.1145/2661829.2661983
    27 https://doi.org/10.1177/0261927x09351676
    28 https://doi.org/10.1371/journal.pone.0073791
    29 https://doi.org/10.1613/jair.4200
    30 https://doi.org/10.3115/1699510.1699543
    31 https://doi.org/10.4108/icst.mobiquitous.2014.258092
    32 https://doi.org/10.5210/fm.v12i9.2003
    33 schema:datePublished 2017-01
    34 schema:datePublishedReg 2017-01-01
    35 schema:description We study the problem of predicting likely places of visit of users using their past tweets. What people write on their microblogs reflects their intent and desire relating to most of their common day interests. Taking this as a strong evidence, we hypothesize that tweets of the person can also be treated as source of strong indicator signals for predicting their places of visits. In this paper, we propose a novel approach for predicting place of visit within a given geospatial range considering the past tweets and the time of visit. These predictions can be used for generating places recommendation or for promotions. In this approach, we analyze use of various features that can be extracted from the historical tweets—for example, personality traits estimated from the past tweets and the actual words mentioned in the tweets. We performed extensive empirical experiments involving, real data derived from twitter timelines of 4600 persons with multi-label classification as predictive model. The performances of proposed approach outperform the four baselines with accuracy reaching 90 % for top five predictions. Based on our experimental study, we come up with general guidelines on building the prediction model in terms of the type of features extracted from historical tweets, window size of historical tweets and on the optimal radius of query around the place of visit at a given time.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N5c3725a414c94dceb4cf18b4bc64f449
    40 Nbc876b2f9d2b49f192aeca9074dda14d
    41 sg:journal.1041769
    42 schema:name Prediction of places of visit using tweets
    43 schema:pagination 145-166
    44 schema:productId N4fa25fac365746fba75207dc23a38f09
    45 N733a87d9b0444cf5b2508616ba6e2f82
    46 Na2eec86496374c049a66c643a044dd4a
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027781802
    48 https://doi.org/10.1007/s10115-016-0936-x
    49 schema:sdDatePublished 2019-04-10T20:08
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Naea09871f6544ec3be73db2f40123d8c
    52 schema:url http://link.springer.com/10.1007%2Fs10115-016-0936-x
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N32032c2f71f342fcbf901d7cc35315c1 rdf:first sg:person.011524652274.76
    57 rdf:rest rdf:nil
    58 N4fa25fac365746fba75207dc23a38f09 schema:name dimensions_id
    59 schema:value pub.1027781802
    60 rdf:type schema:PropertyValue
    61 N5c3725a414c94dceb4cf18b4bc64f449 schema:issueNumber 1
    62 rdf:type schema:PublicationIssue
    63 N70881c984898482880581a2bd2f6800f rdf:first sg:person.07660331065.05
    64 rdf:rest Ne1c7349857c04ba796fce9a9a98acdf4
    65 N733a87d9b0444cf5b2508616ba6e2f82 schema:name readcube_id
    66 schema:value 84584922c81c85d5fd06c330234180146e5d4cc4484982301ca4331214af6ff7
    67 rdf:type schema:PropertyValue
    68 Na2eec86496374c049a66c643a044dd4a schema:name doi
    69 schema:value 10.1007/s10115-016-0936-x
    70 rdf:type schema:PropertyValue
    71 Naea09871f6544ec3be73db2f40123d8c schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Nbc876b2f9d2b49f192aeca9074dda14d schema:volumeNumber 50
    74 rdf:type schema:PublicationVolume
    75 Ne1c7349857c04ba796fce9a9a98acdf4 rdf:first sg:person.014521402563.88
    76 rdf:rest N32032c2f71f342fcbf901d7cc35315c1
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1041769 schema:issn 0219-1377
    84 0219-3116
    85 schema:name Knowledge and Information Systems
    86 rdf:type schema:Periodical
    87 sg:person.011524652274.76 schema:affiliation https://www.grid.ac/institutes/grid.19003.3b
    88 schema:familyName Toshniwal
    89 schema:givenName Durga
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524652274.76
    91 rdf:type schema:Person
    92 sg:person.014521402563.88 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
    93 schema:familyName Kummamuru
    94 schema:givenName Krishna
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521402563.88
    96 rdf:type schema:Person
    97 sg:person.07660331065.05 schema:affiliation https://www.grid.ac/institutes/grid.19003.3b
    98 schema:familyName Chauhan
    99 schema:givenName Arun
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660331065.05
    101 rdf:type schema:Person
    102 sg:pub.10.1007/978-0-387-09823-4_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048998511
    103 https://doi.org/10.1007/978-0-387-09823-4_34
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.jocs.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015168619
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.knosys.2015.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001852941
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/wi-iat.2010.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093851071
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/wi-iat.2013.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094516991
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1126/science.1202775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464504
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1145/1316948.1316967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043210018
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1145/1772690.1772732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038868775
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1145/1963405.1963443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040906761
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1145/2124295.2124315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016824268
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1145/2145204.2145359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026085930
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1145/2370216.2370421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037196432
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1145/2424321.2424348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026091811
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1145/2449396.2449403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041845244
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1145/2484028.2484030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001797823
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/2487575.2487576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021556376
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/2507157.2507182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012884906
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/2512938.2512960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034017038
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/2531602.2531608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045007662
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/2623330.2623681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017004634
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/2645710.2645719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022259873
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1145/2645710.2645765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007206255
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/2661829.2661983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048591766
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1177/0261927x09351676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063782751
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1371/journal.pone.0073791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003618289
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1613/jair.4200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105689922
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.3115/1699510.1699543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099201993
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.4108/icst.mobiquitous.2014.258092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099281261
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.5210/fm.v12i9.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072709484
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.19003.3b schema:alternateName Indian Institute of Technology Roorkee
    162 schema:name Computer Science and Engineering Department, Indian Institute of Technology, Roorkee, India
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
    165 schema:name IBM Research, Bangalore, India
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...