Detecting emerging and evolving novelties with locally adaptive density ratio estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Yun-Qian Miao, Ahmed K. Farahat, Mohamed S. Kamel

ABSTRACT

In today’s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time. More... »

PAGES

1131-1159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9

DOI

http://dx.doi.org/10.1007/s10115-016-0929-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048462311


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Yun-Qian", 
        "id": "sg:person.014647312360.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farahat", 
        "givenName": "Ahmed K.", 
        "id": "sg:person.013262542731.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10115-010-0367-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383366", 
          "https://doi.org/10.1007/s10115-010-0367-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/253495.253506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006780662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2124295.2124376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010500768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2006.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0283-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019606693", 
          "https://doi.org/10.1007/s10115-010-0283-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000008084.60811.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023309467", 
          "https://doi.org/10.1023/b:mach.0000008084.60811.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026948892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2487788.2487904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028559411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/342009.335388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029221191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2740908.2742476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72523-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041842658", 
          "https://doi.org/10.1007/978-3-540-72523-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047680630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2011.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051131417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0474-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052153332", 
          "https://doi.org/10.1007/s10115-011-0474-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mis.2013.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061406405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972788.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972795.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973440.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2013.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094904551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isefs.2006.251161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095561514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "In today\u2019s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-016-0929-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Detecting emerging and evolving novelties with locally adaptive density ratio estimation", 
    "pagination": "1131-1159", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6ddae6a14d72a93a0514a9567c56bdce0fd1ab0d0181fdbb3ff53bdac737fb8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-016-0929-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048462311"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-016-0929-9", 
      "https://app.dimensions.ai/details/publication/pub.1048462311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10115-016-0929-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-016-0929-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N632e30e48b2d40e09289f6f9b33648ca
4 schema:citation sg:pub.10.1007/978-3-540-72523-7_3
5 sg:pub.10.1007/s10115-010-0283-2
6 sg:pub.10.1007/s10115-010-0367-z
7 sg:pub.10.1007/s10115-011-0474-5
8 sg:pub.10.1023/b:mach.0000008084.60811.49
9 https://doi.org/10.1016/j.inffus.2006.10.002
10 https://doi.org/10.1016/j.jprocont.2011.06.004
11 https://doi.org/10.1016/j.patcog.2013.06.005
12 https://doi.org/10.1016/j.patrec.2005.10.010
13 https://doi.org/10.1016/j.sigpro.2013.12.026
14 https://doi.org/10.1109/icdm.2013.116
15 https://doi.org/10.1109/isefs.2006.251161
16 https://doi.org/10.1109/mis.2013.126
17 https://doi.org/10.1109/tkde.2010.235
18 https://doi.org/10.1109/tkde.2010.61
19 https://doi.org/10.1137/1.9781611972788.44
20 https://doi.org/10.1137/1.9781611972795.36
21 https://doi.org/10.1137/1.9781611973440.95
22 https://doi.org/10.1145/1390156.1390201
23 https://doi.org/10.1145/1961189.1961199
24 https://doi.org/10.1145/2124295.2124376
25 https://doi.org/10.1145/2487788.2487904
26 https://doi.org/10.1145/253495.253506
27 https://doi.org/10.1145/2740908.2742476
28 https://doi.org/10.1145/342009.335388
29 https://doi.org/10.1214/aos/1176348768
30 schema:datePublished 2016-12
31 schema:datePublishedReg 2016-12-01
32 schema:description In today’s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N2115c694d2074bd597a7b98d77d3d02c
37 Nd5ccca0eeed741148f3db7703c0c19f4
38 sg:journal.1041769
39 schema:name Detecting emerging and evolving novelties with locally adaptive density ratio estimation
40 schema:pagination 1131-1159
41 schema:productId N1d73b985547e4b2cbe858c299a529eb5
42 N4d70403e91a540759645d3991e26d10f
43 N720812d550674743a38e6de1b860748c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048462311
45 https://doi.org/10.1007/s10115-016-0929-9
46 schema:sdDatePublished 2019-04-10T23:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8c37257cf8074130b644f70afd0b47b2
49 schema:url http://link.springer.com/10.1007%2Fs10115-016-0929-9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1d73b985547e4b2cbe858c299a529eb5 schema:name dimensions_id
54 schema:value pub.1048462311
55 rdf:type schema:PropertyValue
56 N2115c694d2074bd597a7b98d77d3d02c schema:volumeNumber 49
57 rdf:type schema:PublicationVolume
58 N40316b79171542349333dc95de143a74 rdf:first sg:person.01133760566.26
59 rdf:rest rdf:nil
60 N4d70403e91a540759645d3991e26d10f schema:name doi
61 schema:value 10.1007/s10115-016-0929-9
62 rdf:type schema:PropertyValue
63 N632e30e48b2d40e09289f6f9b33648ca rdf:first sg:person.014647312360.53
64 rdf:rest N836ac896b6c1485c9247cf74bac46e6e
65 N720812d550674743a38e6de1b860748c schema:name readcube_id
66 schema:value e6ddae6a14d72a93a0514a9567c56bdce0fd1ab0d0181fdbb3ff53bdac737fb8
67 rdf:type schema:PropertyValue
68 N836ac896b6c1485c9247cf74bac46e6e rdf:first sg:person.013262542731.05
69 rdf:rest N40316b79171542349333dc95de143a74
70 N8c37257cf8074130b644f70afd0b47b2 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nd5ccca0eeed741148f3db7703c0c19f4 schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1041769 schema:issn 0219-1377
81 0219-3116
82 schema:name Knowledge and Information Systems
83 rdf:type schema:Periodical
84 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
85 schema:familyName Kamel
86 schema:givenName Mohamed S.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
88 rdf:type schema:Person
89 sg:person.013262542731.05 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
90 schema:familyName Farahat
91 schema:givenName Ahmed K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05
93 rdf:type schema:Person
94 sg:person.014647312360.53 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
95 schema:familyName Miao
96 schema:givenName Yun-Qian
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-540-72523-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041842658
100 https://doi.org/10.1007/978-3-540-72523-7_3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10115-010-0283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019606693
103 https://doi.org/10.1007/s10115-010-0283-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10115-010-0367-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383366
106 https://doi.org/10.1007/s10115-010-0367-z
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10115-011-0474-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052153332
109 https://doi.org/10.1007/s10115-011-0474-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/b:mach.0000008084.60811.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023309467
112 https://doi.org/10.1023/b:mach.0000008084.60811.49
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.inffus.2006.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788582
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jprocont.2011.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051131417
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.patcog.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026948892
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.sigpro.2013.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047680630
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icdm.2013.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094904551
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/isefs.2006.251161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095561514
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/mis.2013.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406405
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tkde.2010.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662223
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tkde.2010.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662285
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/1.9781611972788.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800280
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/1.9781611972795.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800354
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/1.9781611973440.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801618
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1390156.1390201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906542
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/2124295.2124376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010500768
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2487788.2487904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559411
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/253495.253506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006780662
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/2740908.2742476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039643533
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/342009.335388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029221191
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/aos/1176348768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408694
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
157 schema:name Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...