Detecting emerging and evolving novelties with locally adaptive density ratio estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Yun-Qian Miao, Ahmed K. Farahat, Mohamed S. Kamel

ABSTRACT

In today’s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time. More... »

PAGES

1131-1159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9

DOI

http://dx.doi.org/10.1007/s10115-016-0929-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048462311


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Yun-Qian", 
        "id": "sg:person.014647312360.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farahat", 
        "givenName": "Ahmed K.", 
        "id": "sg:person.013262542731.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10115-010-0367-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383366", 
          "https://doi.org/10.1007/s10115-010-0367-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/253495.253506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006780662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2124295.2124376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010500768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2006.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0283-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019606693", 
          "https://doi.org/10.1007/s10115-010-0283-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000008084.60811.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023309467", 
          "https://doi.org/10.1023/b:mach.0000008084.60811.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026948892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2487788.2487904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028559411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/342009.335388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029221191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2740908.2742476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72523-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041842658", 
          "https://doi.org/10.1007/978-3-540-72523-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047680630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprocont.2011.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051131417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0474-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052153332", 
          "https://doi.org/10.1007/s10115-011-0474-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mis.2013.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061406405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2010.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972788.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972795.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973440.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2013.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094904551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isefs.2006.251161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095561514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "In today\u2019s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-016-0929-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Detecting emerging and evolving novelties with locally adaptive density ratio estimation", 
    "pagination": "1131-1159", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6ddae6a14d72a93a0514a9567c56bdce0fd1ab0d0181fdbb3ff53bdac737fb8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-016-0929-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048462311"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-016-0929-9", 
      "https://app.dimensions.ai/details/publication/pub.1048462311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10115-016-0929-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-016-0929-9'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-016-0929-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N06c45aeb06bd4cbc8b530e74abf8671c
4 schema:citation sg:pub.10.1007/978-3-540-72523-7_3
5 sg:pub.10.1007/s10115-010-0283-2
6 sg:pub.10.1007/s10115-010-0367-z
7 sg:pub.10.1007/s10115-011-0474-5
8 sg:pub.10.1023/b:mach.0000008084.60811.49
9 https://doi.org/10.1016/j.inffus.2006.10.002
10 https://doi.org/10.1016/j.jprocont.2011.06.004
11 https://doi.org/10.1016/j.patcog.2013.06.005
12 https://doi.org/10.1016/j.patrec.2005.10.010
13 https://doi.org/10.1016/j.sigpro.2013.12.026
14 https://doi.org/10.1109/icdm.2013.116
15 https://doi.org/10.1109/isefs.2006.251161
16 https://doi.org/10.1109/mis.2013.126
17 https://doi.org/10.1109/tkde.2010.235
18 https://doi.org/10.1109/tkde.2010.61
19 https://doi.org/10.1137/1.9781611972788.44
20 https://doi.org/10.1137/1.9781611972795.36
21 https://doi.org/10.1137/1.9781611973440.95
22 https://doi.org/10.1145/1390156.1390201
23 https://doi.org/10.1145/1961189.1961199
24 https://doi.org/10.1145/2124295.2124376
25 https://doi.org/10.1145/2487788.2487904
26 https://doi.org/10.1145/253495.253506
27 https://doi.org/10.1145/2740908.2742476
28 https://doi.org/10.1145/342009.335388
29 https://doi.org/10.1214/aos/1176348768
30 schema:datePublished 2016-12
31 schema:datePublishedReg 2016-12-01
32 schema:description In today’s dynamic environment, there naturally exist two types of novelties: emerging and evolving. Emerging novelties are represented by concepts which are completely different from previously seen instances, while evolving novelties are characterized by relatively new aspects of existing concepts. Most existing algorithms for novelty detection focus on detecting only one type of novelty, giving little or no attention to the other. In real situations, the challenge is that these two types of novelties are not easily distinguishable and sometimes a truly novel concept does not fit perfectly under one of these categories. In this paper, a locally adaptive kernel density ratio method is proposed to capture the two characteristics in one formula. In specific, the density ratio between new and reference data is used to capture evolving novelties, and at the same time, the locally adaptive kernel is employed into the density ratio objective function to capture emerging novelties based on the local neighborhood structure. The effectiveness and robustness of the proposed method are demonstrated in the detection of novel handwritten digits and a set of benchmark novelty detection tasks. Additionally, we further examine its applicability in detecting novelties in social media data, which are characterized by a mixture of emerging and evolving topics over time.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N56d5bdbd1bc54cd2b61790ef677358a9
37 Ndaeddecd8b32403381267a5bb8df5c5e
38 sg:journal.1041769
39 schema:name Detecting emerging and evolving novelties with locally adaptive density ratio estimation
40 schema:pagination 1131-1159
41 schema:productId N26fe778dfeb4433fb3bc3fcebb1c5427
42 N2f6f5a3767d94e528fdf09221f66f86e
43 Na30c091ca2ec471c87e225163ab97e44
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048462311
45 https://doi.org/10.1007/s10115-016-0929-9
46 schema:sdDatePublished 2019-04-10T23:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N5e9e05fd9a3a4c2c9dc2d8e9ec5fd3c8
49 schema:url http://link.springer.com/10.1007%2Fs10115-016-0929-9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N06c45aeb06bd4cbc8b530e74abf8671c rdf:first sg:person.014647312360.53
54 rdf:rest N43a08eacd7404ccdbbd2c4bbe85026e0
55 N26fe778dfeb4433fb3bc3fcebb1c5427 schema:name readcube_id
56 schema:value e6ddae6a14d72a93a0514a9567c56bdce0fd1ab0d0181fdbb3ff53bdac737fb8
57 rdf:type schema:PropertyValue
58 N2f2faae570604691a488cd1f4e8fe592 rdf:first sg:person.01133760566.26
59 rdf:rest rdf:nil
60 N2f6f5a3767d94e528fdf09221f66f86e schema:name doi
61 schema:value 10.1007/s10115-016-0929-9
62 rdf:type schema:PropertyValue
63 N43a08eacd7404ccdbbd2c4bbe85026e0 rdf:first sg:person.013262542731.05
64 rdf:rest N2f2faae570604691a488cd1f4e8fe592
65 N56d5bdbd1bc54cd2b61790ef677358a9 schema:volumeNumber 49
66 rdf:type schema:PublicationVolume
67 N5e9e05fd9a3a4c2c9dc2d8e9ec5fd3c8 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Na30c091ca2ec471c87e225163ab97e44 schema:name dimensions_id
70 schema:value pub.1048462311
71 rdf:type schema:PropertyValue
72 Ndaeddecd8b32403381267a5bb8df5c5e schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1041769 schema:issn 0219-1377
81 0219-3116
82 schema:name Knowledge and Information Systems
83 rdf:type schema:Periodical
84 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
85 schema:familyName Kamel
86 schema:givenName Mohamed S.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
88 rdf:type schema:Person
89 sg:person.013262542731.05 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
90 schema:familyName Farahat
91 schema:givenName Ahmed K.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05
93 rdf:type schema:Person
94 sg:person.014647312360.53 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
95 schema:familyName Miao
96 schema:givenName Yun-Qian
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-540-72523-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041842658
100 https://doi.org/10.1007/978-3-540-72523-7_3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10115-010-0283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019606693
103 https://doi.org/10.1007/s10115-010-0283-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10115-010-0367-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383366
106 https://doi.org/10.1007/s10115-010-0367-z
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10115-011-0474-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052153332
109 https://doi.org/10.1007/s10115-011-0474-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/b:mach.0000008084.60811.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023309467
112 https://doi.org/10.1023/b:mach.0000008084.60811.49
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.inffus.2006.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788582
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jprocont.2011.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051131417
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.patcog.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026948892
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.sigpro.2013.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047680630
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icdm.2013.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094904551
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/isefs.2006.251161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095561514
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/mis.2013.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406405
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tkde.2010.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662223
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tkde.2010.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662285
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/1.9781611972788.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800280
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/1.9781611972795.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800354
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/1.9781611973440.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801618
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1390156.1390201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906542
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/2124295.2124376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010500768
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2487788.2487904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559411
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/253495.253506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006780662
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/2740908.2742476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039643533
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/342009.335388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029221191
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/aos/1176348768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408694
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
157 schema:name Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...