Greedy column subset selection for large-scale data sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, Mohamed S. Kamel

ABSTRACT

In today’s information systems, the availability of massive amounts of data necessitates the development of fast and accurate algorithms to summarize these data and represent them in a succinct format. One crucial problem in big data analytics is the selection of representative instances from large and massively distributed data, which is formally known as the Column Subset Selection problem. The solution to this problem enables data analysts to understand the insights of the data and explore its hidden structure. The selected instances can also be used for data preprocessing tasks such as learning a low-dimensional embedding of the data points or computing a low-rank approximation of the corresponding matrix. This paper presents a fast and accurate greedy algorithm for large-scale column subset selection. The algorithm minimizes an objective function, which measures the reconstruction error of the data matrix based on the subset of selected columns. The paper first presents a centralized greedy algorithm for column subset selection, which depends on a novel recursive formula for calculating the reconstruction error of the data matrix. The paper then presents a MapReduce algorithm, which selects a few representative columns from a matrix whose columns are massively distributed across several commodity machines. The algorithm first learns a concise representation of all columns using random projection, and it then solves a generalized column subset selection problem at each machine in which a subset of columns are selected from the sub-matrix on that machine such that the reconstruction error of the concise representation is minimized. The paper demonstrates the effectiveness and efficiency of the proposed algorithm through an empirical evaluation on benchmark data sets. More... »

PAGES

1-34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-014-0801-8

DOI

http://dx.doi.org/10.1007/s10115-014-0801-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017893909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farahat", 
        "givenName": "Ahmed K.", 
        "id": "sg:person.013262542731.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University System of Maryland", 
          "id": "https://www.grid.ac/institutes/grid.410443.6", 
          "name": [
            "Department of Computer Science, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elgohary", 
        "givenName": "Ahmed", 
        "id": "sg:person.016142002337.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016142002337.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Statistics and Actuarial Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghodsi", 
        "givenName": "Ali", 
        "id": "sg:person.07545373531.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545373531.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/290200.287637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003433417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1401890.1401903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004414534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1835804.1835848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010986574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012153938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92182-0_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014673020", 
          "https://doi.org/10.1007/978-3-540-92182-0_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(00)00120-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0000(03)00025-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022116997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0000(03)00025-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022116997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000033113.59016.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022292789", 
          "https://doi.org/10.1023/b:mach.0000033113.59016.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1109557.1109681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11830924_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396901", 
          "https://doi.org/10.1007/11830924_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11830924_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396901", 
          "https://doi.org/10.1007/11830924_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1150402.1150436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028084929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(87)90103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030186175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1458082.1458162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030490858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2020408.2020515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-012-0538-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043085326", 
          "https://doi.org/10.1007/s10115-012-0538-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2011.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044811264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.10073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045759576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1327452.1327492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047364446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1291233.1291297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049356289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273496.1273641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.990133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2003.1251154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0917055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100804139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539704442696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972801.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088797253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972795.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973068.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973075.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973099.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973440.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.1998.743487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093416036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2011.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094186276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2011.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094201931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2013.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094670707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2010.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094693504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2013.6544815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095083962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1557690.1557767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099179692"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "In today\u2019s information systems, the availability of massive amounts of data necessitates the development of fast and accurate algorithms to summarize these data and represent them in a succinct format. One crucial problem in big data analytics is the selection of representative instances from large and massively distributed data, which is formally known as the Column Subset Selection problem. The solution to this problem enables data analysts to understand the insights of the data and explore its hidden structure. The selected instances can also be used for data preprocessing tasks such as learning a low-dimensional embedding of the data points or computing a low-rank approximation of the corresponding matrix. This paper presents a fast and accurate greedy algorithm for large-scale column subset selection. The algorithm minimizes an objective function, which measures the reconstruction error of the data matrix based on the subset of selected columns. The paper first presents a centralized greedy algorithm for column subset selection, which depends on a novel recursive formula for calculating the reconstruction error of the data matrix. The paper then presents a MapReduce algorithm, which selects a few representative columns from a matrix whose columns are massively distributed across several commodity machines. The algorithm first learns a concise representation of all columns using random projection, and it then solves a generalized column subset selection problem at each machine in which a subset of columns are selected from the sub-matrix on that machine such that the reconstruction error of the concise representation is minimized. The paper demonstrates the effectiveness and efficiency of the proposed algorithm through an empirical evaluation on benchmark data sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-014-0801-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Greedy column subset selection for large-scale data sets", 
    "pagination": "1-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55421fe6e02ab668172c64a86200d04cb1ec52ba3a86c6d37fc5eff3256c4031"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-014-0801-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017893909"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-014-0801-8", 
      "https://app.dimensions.ai/details/publication/pub.1017893909"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10115-014-0801-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-014-0801-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-014-0801-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-014-0801-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-014-0801-8'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-014-0801-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5e70265a6f754a1c84e687669308fd18
4 schema:citation sg:pub.10.1007/11830924_30
5 sg:pub.10.1007/978-3-540-92182-0_38
6 sg:pub.10.1007/s10115-012-0538-1
7 sg:pub.10.1023/b:mach.0000033113.59016.96
8 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
9 https://doi.org/10.1002/rsa.10073
10 https://doi.org/10.1016/0024-3795(87)90103-0
11 https://doi.org/10.1016/j.tcs.2011.11.019
12 https://doi.org/10.1016/s0022-0000(03)00025-4
13 https://doi.org/10.1016/s0024-3795(00)00120-8
14 https://doi.org/10.1109/34.990133
15 https://doi.org/10.1109/focs.2010.38
16 https://doi.org/10.1109/focs.2011.21
17 https://doi.org/10.1109/icde.2013.6544815
18 https://doi.org/10.1109/icdm.2011.22
19 https://doi.org/10.1109/icdm.2013.155
20 https://doi.org/10.1109/sfcs.1998.743487
21 https://doi.org/10.1109/tpami.2003.1251154
22 https://doi.org/10.1109/tpami.2005.55
23 https://doi.org/10.1109/tpami.2005.92
24 https://doi.org/10.1109/tpami.2008.128
25 https://doi.org/10.1109/tpami.2010.88
26 https://doi.org/10.1137/0917055
27 https://doi.org/10.1137/1.9781611972795.100
28 https://doi.org/10.1137/1.9781611972801.54
29 https://doi.org/10.1137/1.9781611973068.105
30 https://doi.org/10.1137/1.9781611973075.76
31 https://doi.org/10.1137/1.9781611973099.95
32 https://doi.org/10.1137/1.9781611973440.49
33 https://doi.org/10.1137/100804139
34 https://doi.org/10.1137/s0097539704442696
35 https://doi.org/10.1145/1109557.1109681
36 https://doi.org/10.1145/1150402.1150436
37 https://doi.org/10.1145/1273496.1273641
38 https://doi.org/10.1145/1291233.1291297
39 https://doi.org/10.1145/1327452.1327492
40 https://doi.org/10.1145/1401890.1401903
41 https://doi.org/10.1145/1458082.1458162
42 https://doi.org/10.1145/1835804.1835848
43 https://doi.org/10.1145/2020408.2020515
44 https://doi.org/10.1145/290200.287637
45 https://doi.org/10.3115/1557690.1557767
46 schema:datePublished 2015-10
47 schema:datePublishedReg 2015-10-01
48 schema:description In today’s information systems, the availability of massive amounts of data necessitates the development of fast and accurate algorithms to summarize these data and represent them in a succinct format. One crucial problem in big data analytics is the selection of representative instances from large and massively distributed data, which is formally known as the Column Subset Selection problem. The solution to this problem enables data analysts to understand the insights of the data and explore its hidden structure. The selected instances can also be used for data preprocessing tasks such as learning a low-dimensional embedding of the data points or computing a low-rank approximation of the corresponding matrix. This paper presents a fast and accurate greedy algorithm for large-scale column subset selection. The algorithm minimizes an objective function, which measures the reconstruction error of the data matrix based on the subset of selected columns. The paper first presents a centralized greedy algorithm for column subset selection, which depends on a novel recursive formula for calculating the reconstruction error of the data matrix. The paper then presents a MapReduce algorithm, which selects a few representative columns from a matrix whose columns are massively distributed across several commodity machines. The algorithm first learns a concise representation of all columns using random projection, and it then solves a generalized column subset selection problem at each machine in which a subset of columns are selected from the sub-matrix on that machine such that the reconstruction error of the concise representation is minimized. The paper demonstrates the effectiveness and efficiency of the proposed algorithm through an empirical evaluation on benchmark data sets.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N4304608b9cd24c509de6036a1249788d
53 Nbe453e846c0d4960864e9dfb6db59cc3
54 sg:journal.1041769
55 schema:name Greedy column subset selection for large-scale data sets
56 schema:pagination 1-34
57 schema:productId N38ed40c1c26b428b9d6651145c6d2b92
58 Nb480d71c9dbb47a7a7bcca48e007b63e
59 Nccb0af04f1894751bf88208bdf3389aa
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017893909
61 https://doi.org/10.1007/s10115-014-0801-8
62 schema:sdDatePublished 2019-04-11T01:07
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nbc96cb2e103e4801ac1de110bf6e4b71
65 schema:url http://link.springer.com/10.1007%2Fs10115-014-0801-8
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N38ed40c1c26b428b9d6651145c6d2b92 schema:name dimensions_id
70 schema:value pub.1017893909
71 rdf:type schema:PropertyValue
72 N415d79be063b45d1aea1b0f871534f6f rdf:first sg:person.07545373531.09
73 rdf:rest N9ab5650bfa1148dba05704873791e63f
74 N4304608b9cd24c509de6036a1249788d schema:volumeNumber 45
75 rdf:type schema:PublicationVolume
76 N5e70265a6f754a1c84e687669308fd18 rdf:first sg:person.013262542731.05
77 rdf:rest N83ba65312ddd457d9192d465f38eb2cf
78 N83ba65312ddd457d9192d465f38eb2cf rdf:first sg:person.016142002337.07
79 rdf:rest N415d79be063b45d1aea1b0f871534f6f
80 N9ab5650bfa1148dba05704873791e63f rdf:first sg:person.01133760566.26
81 rdf:rest rdf:nil
82 Nb480d71c9dbb47a7a7bcca48e007b63e schema:name doi
83 schema:value 10.1007/s10115-014-0801-8
84 rdf:type schema:PropertyValue
85 Nbc96cb2e103e4801ac1de110bf6e4b71 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbe453e846c0d4960864e9dfb6db59cc3 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Nccb0af04f1894751bf88208bdf3389aa schema:name readcube_id
90 schema:value 55421fe6e02ab668172c64a86200d04cb1ec52ba3a86c6d37fc5eff3256c4031
91 rdf:type schema:PropertyValue
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:journal.1041769 schema:issn 0219-1377
99 0219-3116
100 schema:name Knowledge and Information Systems
101 rdf:type schema:Periodical
102 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
103 schema:familyName Kamel
104 schema:givenName Mohamed S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
106 rdf:type schema:Person
107 sg:person.013262542731.05 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
108 schema:familyName Farahat
109 schema:givenName Ahmed K.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262542731.05
111 rdf:type schema:Person
112 sg:person.016142002337.07 schema:affiliation https://www.grid.ac/institutes/grid.410443.6
113 schema:familyName Elgohary
114 schema:givenName Ahmed
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016142002337.07
116 rdf:type schema:Person
117 sg:person.07545373531.09 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
118 schema:familyName Ghodsi
119 schema:givenName Ali
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545373531.09
121 rdf:type schema:Person
122 sg:pub.10.1007/11830924_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027396901
123 https://doi.org/10.1007/11830924_30
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-540-92182-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014673020
126 https://doi.org/10.1007/978-3-540-92182-0_38
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10115-012-0538-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043085326
129 https://doi.org/10.1007/s10115-012-0538-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1023/b:mach.0000033113.59016.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022292789
132 https://doi.org/10.1023/b:mach.0000033113.59016.96
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012153938
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/rsa.10073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045759576
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0024-3795(87)90103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030186175
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tcs.2011.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044811264
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0022-0000(03)00025-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022116997
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0024-3795(00)00120-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596771
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/34.990133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157378
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/focs.2010.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094693504
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/focs.2011.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094201931
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/icde.2013.6544815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095083962
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icdm.2011.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094186276
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/icdm.2013.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094670707
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/sfcs.1998.743487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093416036
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tpami.2003.1251154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742611
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tpami.2005.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742917
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tpami.2005.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742947
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tpami.2008.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743490
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tpami.2010.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744001
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/0917055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857809
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/1.9781611972795.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800322
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/1.9781611972801.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088797253
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/1.9781611973068.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801018
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1137/1.9781611973075.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801261
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1137/1.9781611973099.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801565
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1137/1.9781611973440.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801992
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1137/100804139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859217
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1137/s0097539704442696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879532
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/1109557.1109681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023446975
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1150402.1150436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028084929
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/1273496.1273641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811766
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1291233.1291297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049356289
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/1327452.1327492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047364446
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/1401890.1401903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004414534
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/1458082.1458162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030490858
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/1835804.1835848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010986574
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1145/2020408.2020515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032633549
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1145/290200.287637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003433417
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3115/1557690.1557767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099179692
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.410443.6 schema:alternateName University System of Maryland
211 schema:name Department of Computer Science, University of Maryland, 20742, College Park, MD, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
214 schema:name Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
215 Department of Statistics and Actuarial Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...