Information propagation in online social networks: a tie-strength perspective View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Jichang Zhao, Junjie Wu, Xu Feng, Hui Xiong, Ke Xu

ABSTRACT

In this paper, we investigate the relationship between the tie strength and information propagation in online social networks (OSNs). Specifically, we propose a novel information diffusion model to simulate the information propagation in OSNs. Empirical studies through this model on various real-world online social network data sets reveal three interesting findings. First, it is the adoption of the information pushing mechanism that greatly facilitates the information propagation in OSNs. Second, some global but cost-intensive strategies, such as selecting the ties of higher betweenness centralities for information propagation, no longer have significant advantages. Third, the random selection strategy is more efficient than selecting the strong ties for information propagation in OSNs. Along this line, we provide further explanations by categorizing weak ties into positive and negative ones and reveal the special bridge effect of positive weak ties. The inverse quantitative relationship between weak ties and network clustering coefficients is also carefully studied, which finally gives reasonable explanations to the above findings. Finally, we give some business suggestions for the cost-efficient and secured information propagation in online social networks. More... »

PAGES

589-608

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10115-011-0445-x

DOI

http://dx.doi.org/10.1007/s10115-011-0445-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023796676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "State Key Laboratory of Software Development Environment, Beihang University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jichang", 
        "id": "sg:person.01164370057.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164370057.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "School of Economics and Management, Beihang University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Junjie", 
        "id": "sg:person.013071533765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071533765.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "State Key Laboratory of Software Development Environment, Beihang University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xu", 
        "id": "sg:person.012470310503.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470310503.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Rutgers Business School, Rutgers University, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Hui", 
        "id": "sg:person.012553620117.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553620117.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "State Key Laboratory of Software Development Environment, Beihang University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Ke", 
        "id": "sg:person.0705447006.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705447006.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-04747-3_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000016846", 
          "https://doi.org/10.1007/978-3-642-04747-3_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1458082.1458123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003029106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003612092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1526709.1526806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004454217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008504839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1644893.1644900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018066122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242572.1242685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730110112519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022965348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1592665.1592675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610245104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025075085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0396-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026397226", 
          "https://doi.org/10.1007/s10115-011-0396-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011122126881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026494708", 
          "https://doi.org/10.1023/a:1011122126881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298306.1298311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1518701.1518736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033627500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034921751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1514888.1514892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038900392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038979821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.036122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038979821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1578002.1578005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039928788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0353-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044068953", 
          "https://doi.org/10.1007/s10115-010-0353-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0321-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049613137", 
          "https://doi.org/10.1007/s10115-010-0321-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053687811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/225469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058544967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/226707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058546205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/521848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058793333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080734315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cse.2009.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093274452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2010.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094272086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2010.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095289341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asonam.2009.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095477650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "In this paper, we investigate the relationship between the tie strength and information propagation in online social networks (OSNs). Specifically, we propose a novel information diffusion model to simulate the information propagation in OSNs. Empirical studies through this model on various real-world online social network data sets reveal three interesting findings. First, it is the adoption of the information pushing mechanism that greatly facilitates the information propagation in OSNs. Second, some global but cost-intensive strategies, such as selecting the ties of higher betweenness centralities for information propagation, no longer have significant advantages. Third, the random selection strategy is more efficient than selecting the strong ties for information propagation in OSNs. Along this line, we provide further explanations by categorizing weak ties into positive and negative ones and reveal the special bridge effect of positive weak ties. The inverse quantitative relationship between weak ties and network clustering coefficients is also carefully studied, which finally gives reasonable explanations to the above findings. Finally, we give some business suggestions for the cost-efficient and secured information propagation in online social networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10115-011-0445-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041769", 
        "issn": [
          "0219-1377", 
          "0219-3116"
        ], 
        "name": "Knowledge and Information Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Information propagation in online social networks: a tie-strength perspective", 
    "pagination": "589-608", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "715f1abfc2d03317d93b53e7a100ff18ac3ac1277edd985c6830a6c57af0b59c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10115-011-0445-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023796676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10115-011-0445-x", 
      "https://app.dimensions.ai/details/publication/pub.1023796676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60335_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10115-011-0445-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10115-011-0445-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10115-011-0445-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10115-011-0445-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10115-011-0445-x'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10115-011-0445-x schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb24331a3f58343ae9db2513aac055287
4 schema:citation sg:pub.10.1007/978-3-642-04747-3_24
5 sg:pub.10.1007/s10115-010-0321-0
6 sg:pub.10.1007/s10115-010-0353-5
7 sg:pub.10.1007/s10115-011-0396-2
8 sg:pub.10.1023/a:1011122126881
9 sg:pub.10.1038/30918
10 https://doi.org/10.1016/j.physa.2006.06.018
11 https://doi.org/10.1073/pnas.0610245104
12 https://doi.org/10.1080/00018730110112519
13 https://doi.org/10.1086/225469
14 https://doi.org/10.1086/226707
15 https://doi.org/10.1086/521848
16 https://doi.org/10.1103/physreve.68.036122
17 https://doi.org/10.1103/physreve.82.016105
18 https://doi.org/10.1109/asonam.2009.45
19 https://doi.org/10.1109/cse.2009.439
20 https://doi.org/10.1109/icdm.2010.118
21 https://doi.org/10.1109/icdm.2010.22
22 https://doi.org/10.1137/080734315
23 https://doi.org/10.1145/1242572.1242685
24 https://doi.org/10.1145/1298306.1298311
25 https://doi.org/10.1145/1458082.1458123
26 https://doi.org/10.1145/1514888.1514892
27 https://doi.org/10.1145/1518701.1518736
28 https://doi.org/10.1145/1526709.1526806
29 https://doi.org/10.1145/1557019.1557047
30 https://doi.org/10.1145/1557019.1557064
31 https://doi.org/10.1145/1557019.1557105
32 https://doi.org/10.1145/1578002.1578005
33 https://doi.org/10.1145/1592665.1592675
34 https://doi.org/10.1145/1644893.1644900
35 https://doi.org/10.1145/956750.956769
36 schema:datePublished 2012-09
37 schema:datePublishedReg 2012-09-01
38 schema:description In this paper, we investigate the relationship between the tie strength and information propagation in online social networks (OSNs). Specifically, we propose a novel information diffusion model to simulate the information propagation in OSNs. Empirical studies through this model on various real-world online social network data sets reveal three interesting findings. First, it is the adoption of the information pushing mechanism that greatly facilitates the information propagation in OSNs. Second, some global but cost-intensive strategies, such as selecting the ties of higher betweenness centralities for information propagation, no longer have significant advantages. Third, the random selection strategy is more efficient than selecting the strong ties for information propagation in OSNs. Along this line, we provide further explanations by categorizing weak ties into positive and negative ones and reveal the special bridge effect of positive weak ties. The inverse quantitative relationship between weak ties and network clustering coefficients is also carefully studied, which finally gives reasonable explanations to the above findings. Finally, we give some business suggestions for the cost-efficient and secured information propagation in online social networks.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N37701065fd654e188ed787d32e637b50
43 Nb4a414e6e76a440baa82bfed7c27e751
44 sg:journal.1041769
45 schema:name Information propagation in online social networks: a tie-strength perspective
46 schema:pagination 589-608
47 schema:productId N360b54d8fbd84301a93c82b901fc724f
48 N900eda361d284b3281112abe066a16e8
49 Nd7781c07905a4b119cba8a862954730e
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023796676
51 https://doi.org/10.1007/s10115-011-0445-x
52 schema:sdDatePublished 2019-04-11T10:59
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd90389787fd04fd687ea41654ea1e202
55 schema:url http://link.springer.com/10.1007%2Fs10115-011-0445-x
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N360b54d8fbd84301a93c82b901fc724f schema:name readcube_id
60 schema:value 715f1abfc2d03317d93b53e7a100ff18ac3ac1277edd985c6830a6c57af0b59c
61 rdf:type schema:PropertyValue
62 N37701065fd654e188ed787d32e637b50 schema:volumeNumber 32
63 rdf:type schema:PublicationVolume
64 N7278662b111b4a6a85d42afcefb26605 rdf:first sg:person.0705447006.21
65 rdf:rest rdf:nil
66 N900eda361d284b3281112abe066a16e8 schema:name dimensions_id
67 schema:value pub.1023796676
68 rdf:type schema:PropertyValue
69 Nb24331a3f58343ae9db2513aac055287 rdf:first sg:person.01164370057.66
70 rdf:rest Nef42ef35d3744ed2b2061661315aeed6
71 Nb4a414e6e76a440baa82bfed7c27e751 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 Nc6316eec6960489d9fbb73a50524c38b rdf:first sg:person.012470310503.39
74 rdf:rest Ne8d01f7f83984d439ba4ec03b28e9b8a
75 Nd7781c07905a4b119cba8a862954730e schema:name doi
76 schema:value 10.1007/s10115-011-0445-x
77 rdf:type schema:PropertyValue
78 Nd90389787fd04fd687ea41654ea1e202 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne8d01f7f83984d439ba4ec03b28e9b8a rdf:first sg:person.012553620117.48
81 rdf:rest N7278662b111b4a6a85d42afcefb26605
82 Nef42ef35d3744ed2b2061661315aeed6 rdf:first sg:person.013071533765.01
83 rdf:rest Nc6316eec6960489d9fbb73a50524c38b
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:journal.1041769 schema:issn 0219-1377
91 0219-3116
92 schema:name Knowledge and Information Systems
93 rdf:type schema:Periodical
94 sg:person.01164370057.66 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
95 schema:familyName Zhao
96 schema:givenName Jichang
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164370057.66
98 rdf:type schema:Person
99 sg:person.012470310503.39 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
100 schema:familyName Feng
101 schema:givenName Xu
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470310503.39
103 rdf:type schema:Person
104 sg:person.012553620117.48 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
105 schema:familyName Xiong
106 schema:givenName Hui
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553620117.48
108 rdf:type schema:Person
109 sg:person.013071533765.01 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
110 schema:familyName Wu
111 schema:givenName Junjie
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071533765.01
113 rdf:type schema:Person
114 sg:person.0705447006.21 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
115 schema:familyName Xu
116 schema:givenName Ke
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705447006.21
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-642-04747-3_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000016846
120 https://doi.org/10.1007/978-3-642-04747-3_24
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10115-010-0321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049613137
123 https://doi.org/10.1007/s10115-010-0321-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10115-010-0353-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044068953
126 https://doi.org/10.1007/s10115-010-0353-5
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10115-011-0396-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026397226
129 https://doi.org/10.1007/s10115-011-0396-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1023/a:1011122126881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026494708
132 https://doi.org/10.1023/a:1011122126881
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
135 https://doi.org/10.1038/30918
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physa.2006.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003612092
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.0610245104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025075085
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1086/225469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058544967
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/226707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058546205
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1086/521848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058793333
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.68.036122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038979821
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.82.016105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063949
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/asonam.2009.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477650
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/cse.2009.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093274452
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icdm.2010.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095289341
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icdm.2010.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094272086
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/080734315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855119
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/1242572.1242685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901872
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/1298306.1298311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500315
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1458082.1458123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003029106
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/1514888.1514892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038900392
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/1518701.1518736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033627500
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1145/1526709.1526806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004454217
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/1557019.1557047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053687811
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/1557019.1557064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008504839
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/1557019.1557105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022965348
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/1578002.1578005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039928788
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/1592665.1592675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647599
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1644893.1644900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018066122
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/956750.956769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034921751
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
190 schema:name Rutgers Business School, Rutgers University, New Brunswick, NJ, USA
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
193 schema:name School of Economics and Management, Beihang University, Beijing, China
194 State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...