Suspension Splittings and Self-maps of Flag Manifolds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shizuo Kaji, Stephen Theriault

ABSTRACT

If G is a compact connected Lie group and T is a maximal torus, we give a wedge decomposition of ΣG/T by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of G/T.

PAGES

445-462

References to SciGraph publications

  • 1986-12. Rigidity properties of compact Lie groups modulo maximal tori in MATHEMATISCHE ANNALEN
  • 1992-05. A Decomposition of the Descent Algebra of a Finite Coxeter Group in JOURNAL OF ALGEBRAIC COMBINATORICS
  • 2004-11. Maps from a Simply Connected Space to Flag Manifold G/T in ACTA MATHEMATICA SINICA, ENGLISH SERIES
  • Journal

    TITLE

    Acta Mathematica Sinica, English Series

    ISSUE

    4

    VOLUME

    35

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10114-019-8051-z

    DOI

    http://dx.doi.org/10.1007/s10114-019-8051-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112989255


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Institute of Mathematics for Industry, Kyushu University, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaji", 
            "givenName": "Shizuo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southampton", 
              "id": "https://www.grid.ac/institutes/grid.5491.9", 
              "name": [
                "Mathematical Sciences, University of Southampton, SO17 1BJ, Southampton, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Theriault", 
            "givenName": "Stephen", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/s0010437x06002405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001047418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aam.2009.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007422994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10114-004-0390-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008450078", 
              "https://doi.org/10.1007/s10114-004-0390-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0024610701002216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017727042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.41.7.490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020132024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1981-0626481-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026210590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022481230120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041134964", 
              "https://doi.org/10.1023/a:1022481230120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022481230120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041134964", 
              "https://doi.org/10.1023/a:1022481230120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(85)90012-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044718026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046932482", 
              "https://doi.org/10.1007/bf01459142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046932482", 
              "https://doi.org/10.1007/bf01459142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/agt.2012.12.643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069058186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.2000.192.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069070786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178244298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070922022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/1191591997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070932783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250517639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083508721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250523239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083509852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250524375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083510050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250524818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083510127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/pspum/056.1/1278698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089197277"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "If G is a compact connected Lie group and T is a maximal torus, we give a wedge decomposition of \u03a3G/T by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of G/T.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10114-019-8051-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040372", 
            "issn": [
              "1439-8516", 
              "1439-7617"
            ], 
            "name": "Acta Mathematica Sinica, English Series", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "name": "Suspension Splittings and Self-maps of Flag Manifolds", 
        "pagination": "445-462", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b84576245c497c7cee7034473b6f86d88fda3b768fc92943e7fca79e3d8b64d1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10114-019-8051-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112989255"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10114-019-8051-z", 
          "https://app.dimensions.ai/details/publication/pub.1112989255"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112059_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10114-019-8051-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8051-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8051-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8051-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8051-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      20 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10114-019-8051-z schema:author Nff64bc54762746ee95c223b0b47f18d0
    2 schema:citation sg:pub.10.1007/bf01459142
    3 sg:pub.10.1007/s10114-004-0390-7
    4 sg:pub.10.1023/a:1022481230120
    5 https://doi.org/10.1016/0040-9383(85)90012-6
    6 https://doi.org/10.1016/j.aam.2009.08.004
    7 https://doi.org/10.1073/pnas.41.7.490
    8 https://doi.org/10.1090/pspum/056.1/1278698
    9 https://doi.org/10.1090/s0002-9947-1981-0626481-9
    10 https://doi.org/10.1112/s0010437x06002405
    11 https://doi.org/10.1112/s0024610701002216
    12 https://doi.org/10.1215/kjm/1250517639
    13 https://doi.org/10.1215/kjm/1250523239
    14 https://doi.org/10.1215/kjm/1250524375
    15 https://doi.org/10.1215/kjm/1250524818
    16 https://doi.org/10.2140/agt.2012.12.643
    17 https://doi.org/10.2140/pjm.2000.192.93
    18 https://doi.org/10.2307/1969728
    19 https://doi.org/10.2748/tmj/1178244298
    20 https://doi.org/10.2969/jmsj/1191591997
    21 schema:datePublished 2019-04
    22 schema:datePublishedReg 2019-04-01
    23 schema:description If G is a compact connected Lie group and T is a maximal torus, we give a wedge decomposition of ΣG/T by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of G/T.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Ncee8fe8111494246ac7e4ecb99de99da
    28 Ne7dae9fc2a2e4120b2938a8eb8c7bf1e
    29 sg:journal.1040372
    30 schema:name Suspension Splittings and Self-maps of Flag Manifolds
    31 schema:pagination 445-462
    32 schema:productId N0a92dff727be4d53a88350391ae6948d
    33 N97f43d4a6d6c41039e7aef90bf34e297
    34 Nfb37c4d4e48945a69f5dad2f2ea43050
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112989255
    36 https://doi.org/10.1007/s10114-019-8051-z
    37 schema:sdDatePublished 2019-04-11T13:05
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N1bb3bc54b27945ea94b98a5427c6b4a8
    40 schema:url https://link.springer.com/10.1007%2Fs10114-019-8051-z
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0a92dff727be4d53a88350391ae6948d schema:name readcube_id
    45 schema:value b84576245c497c7cee7034473b6f86d88fda3b768fc92943e7fca79e3d8b64d1
    46 rdf:type schema:PropertyValue
    47 N1bb3bc54b27945ea94b98a5427c6b4a8 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N64c8297478d345989979a14713fb46a5 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
    50 schema:familyName Theriault
    51 schema:givenName Stephen
    52 rdf:type schema:Person
    53 N8e5928e6204f4d84ae493fdce98fc56b schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    54 schema:familyName Kaji
    55 schema:givenName Shizuo
    56 rdf:type schema:Person
    57 N97f43d4a6d6c41039e7aef90bf34e297 schema:name doi
    58 schema:value 10.1007/s10114-019-8051-z
    59 rdf:type schema:PropertyValue
    60 N9ab00f6c1bf340dcadf7fbce3d60d934 rdf:first N64c8297478d345989979a14713fb46a5
    61 rdf:rest rdf:nil
    62 Ncee8fe8111494246ac7e4ecb99de99da schema:volumeNumber 35
    63 rdf:type schema:PublicationVolume
    64 Ne7dae9fc2a2e4120b2938a8eb8c7bf1e schema:issueNumber 4
    65 rdf:type schema:PublicationIssue
    66 Nfb37c4d4e48945a69f5dad2f2ea43050 schema:name dimensions_id
    67 schema:value pub.1112989255
    68 rdf:type schema:PropertyValue
    69 Nff64bc54762746ee95c223b0b47f18d0 rdf:first N8e5928e6204f4d84ae493fdce98fc56b
    70 rdf:rest N9ab00f6c1bf340dcadf7fbce3d60d934
    71 sg:journal.1040372 schema:issn 1439-7617
    72 1439-8516
    73 schema:name Acta Mathematica Sinica, English Series
    74 rdf:type schema:Periodical
    75 sg:pub.10.1007/bf01459142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932482
    76 https://doi.org/10.1007/bf01459142
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s10114-004-0390-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008450078
    79 https://doi.org/10.1007/s10114-004-0390-7
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1023/a:1022481230120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041134964
    82 https://doi.org/10.1023/a:1022481230120
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0040-9383(85)90012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718026
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.aam.2009.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007422994
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1073/pnas.41.7.490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132024
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1090/pspum/056.1/1278698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089197277
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1090/s0002-9947-1981-0626481-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026210590
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1112/s0010437x06002405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001047418
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1112/s0024610701002216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017727042
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1215/kjm/1250517639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508721
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1215/kjm/1250523239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509852
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1215/kjm/1250524375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083510050
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1215/kjm/1250524818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083510127
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.2140/agt.2012.12.643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069058186
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.2140/pjm.2000.192.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069070786
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.2307/1969728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675093
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.2748/tmj/1178244298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070922022
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.2969/jmsj/1191591997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070932783
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
    117 schema:name Institute of Mathematics for Industry, Kyushu University, 819-0395, Fukuoka, Japan
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
    120 schema:name Mathematical Sciences, University of Southampton, SO17 1BJ, Southampton, United Kingdom
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...