Spacelike Möbius Hypersurfaces in Four Dimensional Lorentzian Space Form View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yan Bin Lin, Ying Lü, Chang Ping Wang

ABSTRACT

In this paper, we first set up an alternative fundamental theory of Möbius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {Ei}. Then we give a complete classification for spacelike Möbius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either Möbius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing Möbius form. More... »

PAGES

519-536

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-019-8042-0

DOI

http://dx.doi.org/10.1007/s10114-019-8042-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112985181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fujian Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411503.2", 
          "name": [
            "College of Mathematics and Informatics, Fujian Normal University, 350117, Fuzhou, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yan Bin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fc", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fujian Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411503.2", 
          "name": [
            "College of Mathematics and Informatics, Fujian Normal University, 350117, Fuzhou, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chang Ping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10455-014-9421-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016401282", 
          "https://doi.org/10.1007/s10455-014-9421-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290050080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017115725", 
          "https://doi.org/10.1007/s002290050080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000005274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020875177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/549602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027161219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11512-011-0161-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027784096", 
          "https://doi.org/10.1007/s11512-011-0161-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00229-003-0383-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051893472", 
          "https://doi.org/10.1007/s00229-003-0383-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x10006033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062902464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1360/03ys0134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065068892", 
          "https://doi.org/10.1360/03ys0134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2748/tmj/1170347691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070920304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-017-6208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090585835", 
          "https://doi.org/10.1007/s10114-017-6208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-017-6208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090585835", 
          "https://doi.org/10.1007/s10114-017-6208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11401-017-1028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091407409", 
          "https://doi.org/10.1007/s11401-017-1028-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11401-017-1028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091407409", 
          "https://doi.org/10.1007/s11401-017-1028-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/jmsj/07027573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103448924"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we first set up an alternative fundamental theory of M\u00f6bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {Ei}. Then we give a complete classification for spacelike M\u00f6bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M\u00f6bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M\u00f6bius form.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-019-8042-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Spacelike M\u00f6bius Hypersurfaces in Four Dimensional Lorentzian Space Form", 
    "pagination": "519-536", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53f541bbd152bff3edd04d3675975f5ae3f789cdea2d261c6aadbcb85a48b0f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-019-8042-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112985181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-019-8042-0", 
      "https://app.dimensions.ai/details/publication/pub.1112985181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112074_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-019-8042-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8042-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8042-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8042-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-8042-0'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-019-8042-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbdc451bf01f74cc2b68dd851347063fb
4 schema:citation sg:pub.10.1007/s00229-003-0383-3
5 sg:pub.10.1007/s002290050080
6 sg:pub.10.1007/s10114-017-6208-1
7 sg:pub.10.1007/s10455-014-9421-5
8 sg:pub.10.1007/s11401-017-1028-2
9 sg:pub.10.1007/s11512-011-0161-5
10 sg:pub.10.1360/03ys0134
11 https://doi.org/10.1017/s0027763000005274
12 https://doi.org/10.1142/s0129167x10006033
13 https://doi.org/10.1155/2013/549602
14 https://doi.org/10.2748/tmj/1170347691
15 https://doi.org/10.2969/jmsj/07027573
16 schema:datePublished 2019-04
17 schema:datePublishedReg 2019-04-01
18 schema:description In this paper, we first set up an alternative fundamental theory of Möbius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {Ei}. Then we give a complete classification for spacelike Möbius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either Möbius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing Möbius form.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N579959bddaec4faf91d88e5d0124b5f0
23 N7c514088ecab4d69a6d42a28147f76a1
24 sg:journal.1040372
25 schema:name Spacelike Möbius Hypersurfaces in Four Dimensional Lorentzian Space Form
26 schema:pagination 519-536
27 schema:productId N546827ba321143a9b0aa7930be4d77a8
28 Nc785a988b07f4881889196ed5ebbcc4f
29 Ncd7411ef98eb47688f989fa5957db7d1
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112985181
31 https://doi.org/10.1007/s10114-019-8042-0
32 schema:sdDatePublished 2019-04-11T13:05
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N952851c52ddf401bb9b42aad30e2d65a
35 schema:url https://link.springer.com/10.1007%2Fs10114-019-8042-0
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N546827ba321143a9b0aa7930be4d77a8 schema:name readcube_id
40 schema:value 53f541bbd152bff3edd04d3675975f5ae3f789cdea2d261c6aadbcb85a48b0f0
41 rdf:type schema:PropertyValue
42 N579959bddaec4faf91d88e5d0124b5f0 schema:volumeNumber 35
43 rdf:type schema:PublicationVolume
44 N7c514088ecab4d69a6d42a28147f76a1 schema:issueNumber 4
45 rdf:type schema:PublicationIssue
46 N7c911fb3a30b4132a8f847429517f3d8 schema:affiliation https://www.grid.ac/institutes/grid.411503.2
47 schema:familyName Wang
48 schema:givenName Chang Ping
49 rdf:type schema:Person
50 N952851c52ddf401bb9b42aad30e2d65a schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na558a54983c34c0c9a1928d9c43b80b0 rdf:first Ndf0acb2e3ac647889422e2ecf1d42f32
53 rdf:rest Ne62276bb09724ff983806f6d2db5d1d2
54 Nbdc451bf01f74cc2b68dd851347063fb rdf:first Ne77cbd3c27d8497c97695a4cc2bd5b14
55 rdf:rest Na558a54983c34c0c9a1928d9c43b80b0
56 Nc785a988b07f4881889196ed5ebbcc4f schema:name doi
57 schema:value 10.1007/s10114-019-8042-0
58 rdf:type schema:PropertyValue
59 Ncd7411ef98eb47688f989fa5957db7d1 schema:name dimensions_id
60 schema:value pub.1112985181
61 rdf:type schema:PropertyValue
62 Ndf0acb2e3ac647889422e2ecf1d42f32 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
63 schema:familyName
64 schema:givenName Ying
65 rdf:type schema:Person
66 Ne62276bb09724ff983806f6d2db5d1d2 rdf:first N7c911fb3a30b4132a8f847429517f3d8
67 rdf:rest rdf:nil
68 Ne77cbd3c27d8497c97695a4cc2bd5b14 schema:affiliation https://www.grid.ac/institutes/grid.411503.2
69 schema:familyName Lin
70 schema:givenName Yan Bin
71 rdf:type schema:Person
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1040372 schema:issn 1439-7617
79 1439-8516
80 schema:name Acta Mathematica Sinica, English Series
81 rdf:type schema:Periodical
82 sg:pub.10.1007/s00229-003-0383-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051893472
83 https://doi.org/10.1007/s00229-003-0383-3
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s002290050080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017115725
86 https://doi.org/10.1007/s002290050080
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10114-017-6208-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090585835
89 https://doi.org/10.1007/s10114-017-6208-1
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s10455-014-9421-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016401282
92 https://doi.org/10.1007/s10455-014-9421-5
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11401-017-1028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091407409
95 https://doi.org/10.1007/s11401-017-1028-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11512-011-0161-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027784096
98 https://doi.org/10.1007/s11512-011-0161-5
99 rdf:type schema:CreativeWork
100 sg:pub.10.1360/03ys0134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065068892
101 https://doi.org/10.1360/03ys0134
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0027763000005274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020875177
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/s0129167x10006033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062902464
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1155/2013/549602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027161219
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2748/tmj/1170347691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070920304
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2969/jmsj/07027573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103448924
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
114 schema:name School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.411503.2 schema:alternateName Fujian Normal University
117 schema:name College of Mathematics and Informatics, Fujian Normal University, 350117, Fuzhou, P. R. China
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...