Distance Between α-Orientations of Plane Graphs by Facial Cycle Reversals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Wei Juan Zhang, Jian Guo Qian, Fu Ji Zhang

ABSTRACT

Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reversal on an orientation of a plane graph is an operation that reverses all the directions of the edges of a directed facial cycle. An orientation of a graph is called an α-orientation if each vertex admits a prescribed out-degree. In this paper, we give an explicit formula for the minimum number of the facial cycle reversals needed to transform one α-orientation into another for plane graphs. More... »

PAGES

569-576

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-019-7403-z

DOI

http://dx.doi.org/10.1007/s10114-019-7403-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112986067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xinjiang Normal University", 
          "id": "https://www.grid.ac/institutes/grid.464477.2", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China", 
            "School of Mathematical Sciences, Xinjiang Normal University, 830017, Urumqi, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wei Juan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xinjiang Normal University", 
          "id": "https://www.grid.ac/institutes/grid.464477.2", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China", 
            "School of Mathematical Sciences, Xinjiang Normal University, 830017, Urumqi, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Jian Guo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fu Ji", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00184-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001901971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(03)00184-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001901971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-365x(00)00201-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028069205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11083-010-9139-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801197", 
          "https://doi.org/10.1007/s11083-010-9139-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11083-010-9139-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801197", 
          "https://doi.org/10.1007/s11083-010-9139-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-218x(00)00204-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035509258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-014-9786-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036770115", 
          "https://doi.org/10.1007/s10878-014-9786-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024483217354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038706109", 
          "https://doi.org/10.1023/a:1024483217354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(81)90120-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038967983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-0032(65)90340-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039405520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(88)90233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047298980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(88)90233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047298980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070699287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851460"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reversal on an orientation of a plane graph is an operation that reverses all the directions of the edges of a directed facial cycle. An orientation of a graph is called an \u03b1-orientation if each vertex admits a prescribed out-degree. In this paper, we give an explicit formula for the minimum number of the facial cycle reversals needed to transform one \u03b1-orientation into another for plane graphs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-019-7403-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Distance Between \u03b1-Orientations of Plane Graphs by Facial Cycle Reversals", 
    "pagination": "569-576", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "697f9144dd71cc3ed61a78ee263dda32611d8db5e9699350acfe6865912a9ba8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-019-7403-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112986067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-019-7403-z", 
      "https://app.dimensions.ai/details/publication/pub.1112986067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112045_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-019-7403-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-7403-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-7403-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-7403-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-019-7403-z'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-019-7403-z schema:about anzsrc-for:11
2 anzsrc-for:1114
3 schema:author Nd47c45abb0da45b8baf691f0f66b0b9a
4 schema:citation sg:pub.10.1007/s10878-014-9786-1
5 sg:pub.10.1007/s11083-010-9139-3
6 sg:pub.10.1023/a:1024483217354
7 https://doi.org/10.1016/0012-365x(88)90233-6
8 https://doi.org/10.1016/0016-0032(65)90340-6
9 https://doi.org/10.1016/0020-0190(81)90120-4
10 https://doi.org/10.1016/s0012-365x(00)00201-6
11 https://doi.org/10.1016/s0166-218x(00)00204-3
12 https://doi.org/10.1016/s0166-218x(03)00184-7
13 https://doi.org/10.1137/070699287
14 schema:datePublished 2019-04
15 schema:datePublishedReg 2019-04-01
16 schema:description Cycle reversal had been shown as a powerful method to deal with the relation among orientations of a graph since it preserves the out-degree of each vertex and the connectivity of the orientations. A facial cycle reversal on an orientation of a plane graph is an operation that reverses all the directions of the edges of a directed facial cycle. An orientation of a graph is called an α-orientation if each vertex admits a prescribed out-degree. In this paper, we give an explicit formula for the minimum number of the facial cycle reversals needed to transform one α-orientation into another for plane graphs.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nac238a73df4a4feeb7724e0249303d8e
21 Ne208674b65ce408c859ccb0606ede0ec
22 sg:journal.1040372
23 schema:name Distance Between α-Orientations of Plane Graphs by Facial Cycle Reversals
24 schema:pagination 569-576
25 schema:productId N5e8ba943917b4be5a13d865c4f4420f0
26 N7958e7799636408bac14b49489f8f866
27 Ndd77e97e13c0436e8cd09aee161d89ad
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112986067
29 https://doi.org/10.1007/s10114-019-7403-z
30 schema:sdDatePublished 2019-04-11T13:04
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N917988d5ee7849c1be26dae7f7ed85d1
33 schema:url https://link.springer.com/10.1007%2Fs10114-019-7403-z
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1a69f07e26914697917cfa3b15daf1d6 rdf:first N6402c042d3384b2abfbe47ab5cdaf474
38 rdf:rest N9f72323f0ffd45478899bff7abae759e
39 N4e50c6fe7692459db1f9e81c76ea12e3 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
40 schema:familyName Zhang
41 schema:givenName Fu Ji
42 rdf:type schema:Person
43 N5e8ba943917b4be5a13d865c4f4420f0 schema:name doi
44 schema:value 10.1007/s10114-019-7403-z
45 rdf:type schema:PropertyValue
46 N6402c042d3384b2abfbe47ab5cdaf474 schema:affiliation https://www.grid.ac/institutes/grid.464477.2
47 schema:familyName Qian
48 schema:givenName Jian Guo
49 rdf:type schema:Person
50 N7958e7799636408bac14b49489f8f866 schema:name readcube_id
51 schema:value 697f9144dd71cc3ed61a78ee263dda32611d8db5e9699350acfe6865912a9ba8
52 rdf:type schema:PropertyValue
53 N917988d5ee7849c1be26dae7f7ed85d1 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N9763fd1f4f7445cab11203334428c326 schema:affiliation https://www.grid.ac/institutes/grid.464477.2
56 schema:familyName Zhang
57 schema:givenName Wei Juan
58 rdf:type schema:Person
59 N9f72323f0ffd45478899bff7abae759e rdf:first N4e50c6fe7692459db1f9e81c76ea12e3
60 rdf:rest rdf:nil
61 Nac238a73df4a4feeb7724e0249303d8e schema:volumeNumber 35
62 rdf:type schema:PublicationVolume
63 Nd47c45abb0da45b8baf691f0f66b0b9a rdf:first N9763fd1f4f7445cab11203334428c326
64 rdf:rest N1a69f07e26914697917cfa3b15daf1d6
65 Ndd77e97e13c0436e8cd09aee161d89ad schema:name dimensions_id
66 schema:value pub.1112986067
67 rdf:type schema:PropertyValue
68 Ne208674b65ce408c859ccb0606ede0ec schema:issueNumber 4
69 rdf:type schema:PublicationIssue
70 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
71 schema:name Medical and Health Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
74 schema:name Paediatrics and Reproductive Medicine
75 rdf:type schema:DefinedTerm
76 sg:journal.1040372 schema:issn 1439-7617
77 1439-8516
78 schema:name Acta Mathematica Sinica, English Series
79 rdf:type schema:Periodical
80 sg:pub.10.1007/s10878-014-9786-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036770115
81 https://doi.org/10.1007/s10878-014-9786-1
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s11083-010-9139-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028801197
84 https://doi.org/10.1007/s11083-010-9139-3
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1024483217354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038706109
87 https://doi.org/10.1023/a:1024483217354
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0012-365x(88)90233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047298980
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0016-0032(65)90340-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039405520
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0020-0190(81)90120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967983
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0012-365x(00)00201-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028069205
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0166-218x(00)00204-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035509258
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0166-218x(03)00184-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001901971
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1137/070699287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851460
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
104 schema:name School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.464477.2 schema:alternateName Xinjiang Normal University
107 schema:name School of Mathematical Sciences, Xiamen University, 361005, Xiamen, P. R. China
108 School of Mathematical Sciences, Xinjiang Normal University, 830017, Urumqi, P. R. China
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...