2-Local Automorphisms on Basic Classical Lie Superalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Li Yu, Ying Wang, Hai Xian Chen, Ji Zhu Nan

ABSTRACT

Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3). More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6

DOI

http://dx.doi.org/10.1007/s10114-018-7519-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110506926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hai Xian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nan", 
        "givenName": "Ji Zhu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2014.12.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000577281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081080903402921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006100431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007545374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(77)90017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-97-04073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015153523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018956900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-014-0307-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026352113", 
          "https://doi.org/10.1007/s11117-014-0307-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2016.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052978304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm7864-12-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s100538671700044x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092719238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098735180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, \u03b1) over the complex number field \u2102. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-018-7519-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }
    ], 
    "name": "2-Local Automorphisms on Basic Classical Lie Superalgebras", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-018-7519-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110506926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-018-7519-6", 
      "https://app.dimensions.ai/details/publication/pub.1110506926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12004_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-018-7519-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      37 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-018-7519-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb67f3e34c4134bf3b30f1d1ad572bab0
4 schema:citation sg:pub.10.1007/s11117-014-0307-3
5 https://doi.org/10.1016/0001-8708(77)90017-2
6 https://doi.org/10.1016/j.jmaa.2014.12.058
7 https://doi.org/10.1016/j.laa.2015.01.016
8 https://doi.org/10.1016/j.laa.2015.08.025
9 https://doi.org/10.1016/j.laa.2016.05.042
10 https://doi.org/10.1017/s0017089512000870
11 https://doi.org/10.1080/03081080903402921
12 https://doi.org/10.1090/gsm/131
13 https://doi.org/10.1090/s0002-9939-97-04073-2
14 https://doi.org/10.1142/s100538671700044x
15 https://doi.org/10.4064/sm7864-12-2015
16 schema:datePublished 2019-03
17 schema:datePublishedReg 2019-03-01
18 schema:description Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1040372
23 schema:name 2-Local Automorphisms on Basic Classical Lie Superalgebras
24 schema:pagination 1-11
25 schema:productId Nc2dbb1d078874eb9aa45309850e264a0
26 Nc75336d40aa045048a77518700357bcf
27 Ne08f108f04b94112a87f231ac34e569d
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110506926
29 https://doi.org/10.1007/s10114-018-7519-6
30 schema:sdDatePublished 2019-04-11T08:22
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N3f7d664758b942e4a8b3815cf218c68b
33 schema:url https://link.springer.com/10.1007%2Fs10114-018-7519-6
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N240efd08b8d0467eab5a33009926c270 rdf:first N5270660b5f204d31a99aacea47ade99d
38 rdf:rest Na0b99b3c10d64b2c9e96c9f98180e574
39 N3b2986609ae74d26b3c9c0890cbcca36 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
40 schema:familyName Chen
41 schema:givenName Hai Xian
42 rdf:type schema:Person
43 N3f7d664758b942e4a8b3815cf218c68b schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N5270660b5f204d31a99aacea47ade99d schema:affiliation https://www.grid.ac/institutes/grid.30055.33
46 schema:familyName Wang
47 schema:givenName Ying
48 rdf:type schema:Person
49 N65e090a8e048456da2f98d9fcfe6351e schema:affiliation https://www.grid.ac/institutes/grid.30055.33
50 schema:familyName Nan
51 schema:givenName Ji Zhu
52 rdf:type schema:Person
53 N9b1e7f5be7f943eaa73727b1b7e42b23 rdf:first N65e090a8e048456da2f98d9fcfe6351e
54 rdf:rest rdf:nil
55 Na0b99b3c10d64b2c9e96c9f98180e574 rdf:first N3b2986609ae74d26b3c9c0890cbcca36
56 rdf:rest N9b1e7f5be7f943eaa73727b1b7e42b23
57 Nb67f3e34c4134bf3b30f1d1ad572bab0 rdf:first Ne7275509d9ab4e61a42dbdaa3c63d426
58 rdf:rest N240efd08b8d0467eab5a33009926c270
59 Nc2dbb1d078874eb9aa45309850e264a0 schema:name dimensions_id
60 schema:value pub.1110506926
61 rdf:type schema:PropertyValue
62 Nc75336d40aa045048a77518700357bcf schema:name readcube_id
63 schema:value 03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863
64 rdf:type schema:PropertyValue
65 Ne08f108f04b94112a87f231ac34e569d schema:name doi
66 schema:value 10.1007/s10114-018-7519-6
67 rdf:type schema:PropertyValue
68 Ne7275509d9ab4e61a42dbdaa3c63d426 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
69 schema:familyName Yu
70 schema:givenName Li
71 rdf:type schema:Person
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1040372 schema:issn 1439-7617
79 1439-8516
80 schema:name Acta Mathematica Sinica, English Series
81 rdf:type schema:Periodical
82 sg:pub.10.1007/s11117-014-0307-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026352113
83 https://doi.org/10.1007/s11117-014-0307-3
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0001-8708(77)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933045
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.jmaa.2014.12.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000577281
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.laa.2015.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018956900
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.laa.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007545374
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.laa.2016.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052978304
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0017089512000870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784363
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/03081080903402921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006100431
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/gsm/131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098735180
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9939-97-04073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015153523
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s100538671700044x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092719238
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4064/sm7864-12-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185559
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
108 schema:name School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
111 schema:name School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...