2-Local Automorphisms on Basic Classical Lie Superalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Li Yu, Ying Wang, Hai Xian Chen, Ji Zhu Nan

ABSTRACT

Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3). More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6

DOI

http://dx.doi.org/10.1007/s10114-018-7519-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110506926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hai Xian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nan", 
        "givenName": "Ji Zhu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2014.12.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000577281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081080903402921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006100431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007545374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(77)90017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-97-04073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015153523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018956900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-014-0307-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026352113", 
          "https://doi.org/10.1007/s11117-014-0307-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2016.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052978304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm7864-12-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s100538671700044x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092719238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098735180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, \u03b1) over the complex number field \u2102. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-018-7519-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }
    ], 
    "name": "2-Local Automorphisms on Basic Classical Lie Superalgebras", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-018-7519-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110506926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-018-7519-6", 
      "https://app.dimensions.ai/details/publication/pub.1110506926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12004_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-018-7519-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      37 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-018-7519-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9445ee0b8c794a028e7dd11044a18967
4 schema:citation sg:pub.10.1007/s11117-014-0307-3
5 https://doi.org/10.1016/0001-8708(77)90017-2
6 https://doi.org/10.1016/j.jmaa.2014.12.058
7 https://doi.org/10.1016/j.laa.2015.01.016
8 https://doi.org/10.1016/j.laa.2015.08.025
9 https://doi.org/10.1016/j.laa.2016.05.042
10 https://doi.org/10.1017/s0017089512000870
11 https://doi.org/10.1080/03081080903402921
12 https://doi.org/10.1090/gsm/131
13 https://doi.org/10.1090/s0002-9939-97-04073-2
14 https://doi.org/10.1142/s100538671700044x
15 https://doi.org/10.4064/sm7864-12-2015
16 schema:datePublished 2019-03
17 schema:datePublishedReg 2019-03-01
18 schema:description Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1040372
23 schema:name 2-Local Automorphisms on Basic Classical Lie Superalgebras
24 schema:pagination 1-11
25 schema:productId N1fb9a3822c2b42a69a542803b87d8469
26 N3b18b69bf46949a3a3285c0eece5e3bb
27 N73a8c57c3fee4f30988ccfb53eeb870f
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110506926
29 https://doi.org/10.1007/s10114-018-7519-6
30 schema:sdDatePublished 2019-04-11T08:22
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nc24eaded63fd4e1399e9f759e885a848
33 schema:url https://link.springer.com/10.1007%2Fs10114-018-7519-6
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0bab5c64f4e9467486ebbf9cdcb7d0ab schema:affiliation https://www.grid.ac/institutes/grid.30055.33
38 schema:familyName Yu
39 schema:givenName Li
40 rdf:type schema:Person
41 N1fb9a3822c2b42a69a542803b87d8469 schema:name readcube_id
42 schema:value 03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863
43 rdf:type schema:PropertyValue
44 N2d0443daa8324277a9fc23c767a83434 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
45 schema:familyName Wang
46 schema:givenName Ying
47 rdf:type schema:Person
48 N352a1cdcee5747c18adeb5f49dbe535d rdf:first Nfc59c71bf66e4a5981c45472b3366285
49 rdf:rest Nbd54729798f44a1096308d97b8d4f290
50 N3b18b69bf46949a3a3285c0eece5e3bb schema:name dimensions_id
51 schema:value pub.1110506926
52 rdf:type schema:PropertyValue
53 N73a8c57c3fee4f30988ccfb53eeb870f schema:name doi
54 schema:value 10.1007/s10114-018-7519-6
55 rdf:type schema:PropertyValue
56 N91b0ae349cbd43fe91f221d83b4328ce schema:affiliation https://www.grid.ac/institutes/grid.30055.33
57 schema:familyName Nan
58 schema:givenName Ji Zhu
59 rdf:type schema:Person
60 N9445ee0b8c794a028e7dd11044a18967 rdf:first N0bab5c64f4e9467486ebbf9cdcb7d0ab
61 rdf:rest Nbcfef1064a2f4471b7df2806b64f1e1a
62 Nbcfef1064a2f4471b7df2806b64f1e1a rdf:first N2d0443daa8324277a9fc23c767a83434
63 rdf:rest N352a1cdcee5747c18adeb5f49dbe535d
64 Nbd54729798f44a1096308d97b8d4f290 rdf:first N91b0ae349cbd43fe91f221d83b4328ce
65 rdf:rest rdf:nil
66 Nc24eaded63fd4e1399e9f759e885a848 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nfc59c71bf66e4a5981c45472b3366285 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
69 schema:familyName Chen
70 schema:givenName Hai Xian
71 rdf:type schema:Person
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1040372 schema:issn 1439-7617
79 1439-8516
80 schema:name Acta Mathematica Sinica, English Series
81 rdf:type schema:Periodical
82 sg:pub.10.1007/s11117-014-0307-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026352113
83 https://doi.org/10.1007/s11117-014-0307-3
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0001-8708(77)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933045
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.jmaa.2014.12.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000577281
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.laa.2015.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018956900
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.laa.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007545374
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.laa.2016.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052978304
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0017089512000870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784363
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/03081080903402921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006100431
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/gsm/131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098735180
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9939-97-04073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015153523
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s100538671700044x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092719238
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4064/sm7864-12-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185559
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
108 schema:name School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
111 schema:name School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...