2-Local Automorphisms on Basic Classical Lie Superalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Li Yu, Ying Wang, Hai Xian Chen, Ji Zhu Nan

ABSTRACT

Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3). More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6

DOI

http://dx.doi.org/10.1007/s10114-018-7519-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110506926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hai Xian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nan", 
        "givenName": "Ji Zhu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2014.12.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000577281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081080903402921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006100431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007545374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(77)90017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-97-04073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015153523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2015.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018956900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-014-0307-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026352113", 
          "https://doi.org/10.1007/s11117-014-0307-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2016.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052978304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm7864-12-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s100538671700044x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092719238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098735180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, \u03b1) over the complex number field \u2102. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-018-7519-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }
    ], 
    "name": "2-Local Automorphisms on Basic Classical Lie Superalgebras", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-018-7519-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110506926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-018-7519-6", 
      "https://app.dimensions.ai/details/publication/pub.1110506926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12004_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-018-7519-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7519-6'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      37 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-018-7519-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9d7f5abf1f0e4551b9ce4177cc679b56
4 schema:citation sg:pub.10.1007/s11117-014-0307-3
5 https://doi.org/10.1016/0001-8708(77)90017-2
6 https://doi.org/10.1016/j.jmaa.2014.12.058
7 https://doi.org/10.1016/j.laa.2015.01.016
8 https://doi.org/10.1016/j.laa.2015.08.025
9 https://doi.org/10.1016/j.laa.2016.05.042
10 https://doi.org/10.1017/s0017089512000870
11 https://doi.org/10.1080/03081080903402921
12 https://doi.org/10.1090/gsm/131
13 https://doi.org/10.1090/s0002-9939-97-04073-2
14 https://doi.org/10.1142/s100538671700044x
15 https://doi.org/10.4064/sm7864-12-2015
16 schema:datePublished 2019-03
17 schema:datePublishedReg 2019-03-01
18 schema:description Let G be a basic classical Lie superalgebra except A(n, n) and D(2, 1, α) over the complex number field ℂ. Using existence of a non-degenerate invariant bilinear form and root space decomposition, we prove that every 2-local automorphism on G is an automorphism. Furthermore, we give an example of a 2-local automorphism which is not an automorphism on a subalgebra of Lie superalgebra spl(3, 3).
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1040372
23 schema:name 2-Local Automorphisms on Basic Classical Lie Superalgebras
24 schema:pagination 1-11
25 schema:productId N6854df52fb4a479c82578ae30fa45b3e
26 Nbcf5ac59b5d546e4b4fb780a34359f4c
27 Nf8a689582eeb41f0bc14e9cacde359b2
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110506926
29 https://doi.org/10.1007/s10114-018-7519-6
30 schema:sdDatePublished 2019-04-11T08:22
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N016141595e564add89c6920530581da1
33 schema:url https://link.springer.com/10.1007%2Fs10114-018-7519-6
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N016141595e564add89c6920530581da1 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N2dba5c5cc3fa425a97eb79a475564b16 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
40 schema:familyName Nan
41 schema:givenName Ji Zhu
42 rdf:type schema:Person
43 N3e48d7aa3b50479a8844a8f225b511d3 rdf:first N2dba5c5cc3fa425a97eb79a475564b16
44 rdf:rest rdf:nil
45 N6854df52fb4a479c82578ae30fa45b3e schema:name doi
46 schema:value 10.1007/s10114-018-7519-6
47 rdf:type schema:PropertyValue
48 N9d7f5abf1f0e4551b9ce4177cc679b56 rdf:first Na9016aeb458c4b43bc1e52326bd6106f
49 rdf:rest Ne1f7b8d845e4474d9458d9f1f0d9be1c
50 Na89ce0b6c6f146089bffd6cdcc02e351 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
51 schema:familyName Wang
52 schema:givenName Ying
53 rdf:type schema:Person
54 Na9016aeb458c4b43bc1e52326bd6106f schema:affiliation https://www.grid.ac/institutes/grid.30055.33
55 schema:familyName Yu
56 schema:givenName Li
57 rdf:type schema:Person
58 Nbcf5ac59b5d546e4b4fb780a34359f4c schema:name readcube_id
59 schema:value 03d0a1a46adf03bc5ff9f4521c6698efb88339543f4c8a5b91b1ed4eb54a0863
60 rdf:type schema:PropertyValue
61 Nd4685102135548bcac4d7bc6cef46bf6 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
62 schema:familyName Chen
63 schema:givenName Hai Xian
64 rdf:type schema:Person
65 Ndb3f9a32d09c463196e8c21fe12d13c8 rdf:first Nd4685102135548bcac4d7bc6cef46bf6
66 rdf:rest N3e48d7aa3b50479a8844a8f225b511d3
67 Ne1f7b8d845e4474d9458d9f1f0d9be1c rdf:first Na89ce0b6c6f146089bffd6cdcc02e351
68 rdf:rest Ndb3f9a32d09c463196e8c21fe12d13c8
69 Nf8a689582eeb41f0bc14e9cacde359b2 schema:name dimensions_id
70 schema:value pub.1110506926
71 rdf:type schema:PropertyValue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1040372 schema:issn 1439-7617
79 1439-8516
80 schema:name Acta Mathematica Sinica, English Series
81 rdf:type schema:Periodical
82 sg:pub.10.1007/s11117-014-0307-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026352113
83 https://doi.org/10.1007/s11117-014-0307-3
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0001-8708(77)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933045
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.jmaa.2014.12.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000577281
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.laa.2015.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018956900
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.laa.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007545374
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.laa.2016.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052978304
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0017089512000870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784363
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/03081080903402921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006100431
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/gsm/131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098735180
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9939-97-04073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015153523
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s100538671700044x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092719238
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4064/sm7864-12-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185559
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
108 schema:name School of Mathematical Sciences, Shanxi University, 030006, Taiyuan, P. R. China
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
111 schema:name School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...