On the Differential Polynomial of a Graph View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Ludwin A. Basilio-Hernández, Walter Carballosa, Jesús Leaños, José M. Sigarreta

ABSTRACT

We introduce the differential polynomial of a graph. The differential polynomial of a graph G of order n is the polynomial B(G;x):=∑k=−n∂(G)Bk(G)xn+k, where Bk(G) denotes the number of vertex subsets of G with differential equal to k. We state some properties of B(G; x) and its coefficients. In particular, we compute the differential polynomial for complete, empty, path, cycle, wheel and double star graphs. We also establish some relationships between B(G; x) and the differential polynomials of graphs which result by removing, adding, and subdividing an edge from G. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-018-7307-3

DOI

http://dx.doi.org/10.1007/s10114-018-7307-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110668339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Zacatecas", 
          "id": "https://www.grid.ac/institutes/grid.412865.c", 
          "name": [
            "Unidad Acad\u00e9mica de Matem\u00e1ticas, Universidad Aut\u00f3noma de Zacatecas, Calzada Solidaridad entronque Paseo a la Bufa, 98060, Zacatecas, Zac., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basilio-Hern\u00e1ndez", 
        "givenName": "Ludwin A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Miami Dade College", 
          "id": "https://www.grid.ac/institutes/grid.421336.1", 
          "name": [
            "Department of Mathematics and Statistics, Florida International University, 11200 SW 8ht Street, 33199, Miami, Florida, USA", 
            "Department of Mathematics, Miami Dade College, 300 NE Second Ave., Miami, FL 33132, Miami, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carballosa", 
        "givenName": "Walter", 
        "id": "sg:person.012525713036.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525713036.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Zacatecas", 
          "id": "https://www.grid.ac/institutes/grid.412865.c", 
          "name": [
            "Unidad Acad\u00e9mica de Matem\u00e1ticas, Universidad Aut\u00f3noma de Zacatecas, Calzada Solidaridad entronque Paseo a la Bufa, 98060, Zacatecas, Zac., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lea\u00f1os", 
        "givenName": "Jes\u00fas", 
        "id": "sg:person.011164414023.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164414023.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Aut\u00f3noma de Guerrero", 
          "id": "https://www.grid.ac/institutes/grid.412856.c", 
          "name": [
            "Facultad de Matem\u00e1ticas, Universidad Aut\u00f3noma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650, Acalpulco Gro., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sigarreta", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.016636070563.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636070563.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0095-8956(79)90070-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002846277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2011.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008964037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.endm.2014.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014418648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2014.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018773274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(94)90163-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09720529.2013.778460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028332300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2014.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029066804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2014.941359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029791139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00373-003-0534-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030684662", 
          "https://doi.org/10.1007/s00373-003-0534-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2010.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031194215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgt.3190050203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038449788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/aadm140210003b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040749316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9800(68)80087-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042038190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008705614290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042584497", 
          "https://doi.org/10.1023/a:1008705614290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008705614290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042584497", 
          "https://doi.org/10.1023/a:1008705614290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2012.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042645179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(03)00225-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043949991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(03)00225-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043949991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2014.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050175402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2012.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052496049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00373-013-1381-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053059377", 
          "https://doi.org/10.1007/s00373-013-1381-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0403037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12988/ijma.2015.54132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064857150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1967597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1954-010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072263910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.082.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073600152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7151/dmgt.1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073620431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2017.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085043773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2017.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091862858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/sym9100205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We introduce the differential polynomial of a graph. The differential polynomial of a graph G of order n is the polynomial B(G;x):=\u2211k=\u2212n\u2202(G)Bk(G)xn+k, where Bk(G) denotes the number of vertex subsets of G with differential equal to k. We state some properties of B(G; x) and its coefficients. In particular, we compute the differential polynomial for complete, empty, path, cycle, wheel and double star graphs. We also establish some relationships between B(G; x) and the differential polynomials of graphs which result by removing, adding, and subdividing an edge from G.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-018-7307-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }
    ], 
    "name": "On the Differential Polynomial of a Graph", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d16e233cba825a939727378d835816aa911076260fc60a884b7a63f8d9ac8b1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-018-7307-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110668339"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-018-7307-3", 
      "https://app.dimensions.ai/details/publication/pub.1110668339"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57228_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-018-7307-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7307-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7307-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7307-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7307-3'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      53 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-018-7307-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndda4eaff34024d0eab68f453545fbad1
4 schema:citation sg:pub.10.1007/s00373-003-0534-z
5 sg:pub.10.1007/s00373-013-1381-1
6 sg:pub.10.1023/a:1008705614290
7 https://doi.org/10.1002/jgt.3190050203
8 https://doi.org/10.1016/0012-365x(94)90163-5
9 https://doi.org/10.1016/0095-8956(79)90070-4
10 https://doi.org/10.1016/j.dam.2012.11.013
11 https://doi.org/10.1016/j.dam.2017.03.016
12 https://doi.org/10.1016/j.dam.2017.08.005
13 https://doi.org/10.1016/j.disc.2012.07.021
14 https://doi.org/10.1016/j.ejc.2010.03.007
15 https://doi.org/10.1016/j.ejc.2011.03.017
16 https://doi.org/10.1016/j.ejc.2014.03.003
17 https://doi.org/10.1016/j.ejc.2014.03.012
18 https://doi.org/10.1016/j.endm.2014.08.041
19 https://doi.org/10.1016/j.tcs.2014.10.007
20 https://doi.org/10.1016/s0021-9800(68)80087-0
21 https://doi.org/10.1016/s0304-3975(03)00225-1
22 https://doi.org/10.1080/00207160.2014.941359
23 https://doi.org/10.1080/09720529.2013.778460
24 https://doi.org/10.1137/0403037
25 https://doi.org/10.12988/ijma.2015.54132
26 https://doi.org/10.2298/aadm140210003b
27 https://doi.org/10.2307/1967597
28 https://doi.org/10.3390/sym9100205
29 https://doi.org/10.4153/cjm-1954-010-9
30 https://doi.org/10.6028/jres.082.019
31 https://doi.org/10.7151/dmgt.1106
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description We introduce the differential polynomial of a graph. The differential polynomial of a graph G of order n is the polynomial B(G;x):=∑k=−n∂(G)Bk(G)xn+k, where Bk(G) denotes the number of vertex subsets of G with differential equal to k. We state some properties of B(G; x) and its coefficients. In particular, we compute the differential polynomial for complete, empty, path, cycle, wheel and double star graphs. We also establish some relationships between B(G; x) and the differential polynomials of graphs which result by removing, adding, and subdividing an edge from G.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1040372
39 schema:name On the Differential Polynomial of a Graph
40 schema:pagination 1-17
41 schema:productId N064f5f791eef498796bcf25f42cbd55f
42 Nd6e7e5496a9340c5927feb295d8ce6a8
43 Nf34f7b1a0ed84ffd88b7ed7d4bad567c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110668339
45 https://doi.org/10.1007/s10114-018-7307-3
46 schema:sdDatePublished 2019-04-11T08:24
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nb117f2c84ee446ff8c1827c28ce5e9ee
49 schema:url https://link.springer.com/10.1007%2Fs10114-018-7307-3
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N064f5f791eef498796bcf25f42cbd55f schema:name dimensions_id
54 schema:value pub.1110668339
55 rdf:type schema:PropertyValue
56 N4d7908598a784e3c98d5c9d15a13bcbd rdf:first sg:person.011164414023.43
57 rdf:rest Nb757bf1caf2d4e8cb4a5265dfb46b9e3
58 N7a032709338e4697a0e6114e959bbdbb schema:affiliation https://www.grid.ac/institutes/grid.412865.c
59 schema:familyName Basilio-Hernández
60 schema:givenName Ludwin A.
61 rdf:type schema:Person
62 Nb117f2c84ee446ff8c1827c28ce5e9ee schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nb757bf1caf2d4e8cb4a5265dfb46b9e3 rdf:first sg:person.016636070563.21
65 rdf:rest rdf:nil
66 Ncb655c71ee3141bf8ed168fd0a33fe10 rdf:first sg:person.012525713036.39
67 rdf:rest N4d7908598a784e3c98d5c9d15a13bcbd
68 Nd6e7e5496a9340c5927feb295d8ce6a8 schema:name readcube_id
69 schema:value 0d16e233cba825a939727378d835816aa911076260fc60a884b7a63f8d9ac8b1
70 rdf:type schema:PropertyValue
71 Ndda4eaff34024d0eab68f453545fbad1 rdf:first N7a032709338e4697a0e6114e959bbdbb
72 rdf:rest Ncb655c71ee3141bf8ed168fd0a33fe10
73 Nf34f7b1a0ed84ffd88b7ed7d4bad567c schema:name doi
74 schema:value 10.1007/s10114-018-7307-3
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1040372 schema:issn 1439-7617
83 1439-8516
84 schema:name Acta Mathematica Sinica, English Series
85 rdf:type schema:Periodical
86 sg:person.011164414023.43 schema:affiliation https://www.grid.ac/institutes/grid.412865.c
87 schema:familyName Leaños
88 schema:givenName Jesús
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164414023.43
90 rdf:type schema:Person
91 sg:person.012525713036.39 schema:affiliation https://www.grid.ac/institutes/grid.421336.1
92 schema:familyName Carballosa
93 schema:givenName Walter
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525713036.39
95 rdf:type schema:Person
96 sg:person.016636070563.21 schema:affiliation https://www.grid.ac/institutes/grid.412856.c
97 schema:familyName Sigarreta
98 schema:givenName José M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636070563.21
100 rdf:type schema:Person
101 sg:pub.10.1007/s00373-003-0534-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684662
102 https://doi.org/10.1007/s00373-003-0534-z
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00373-013-1381-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053059377
105 https://doi.org/10.1007/s00373-013-1381-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1008705614290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042584497
108 https://doi.org/10.1023/a:1008705614290
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/jgt.3190050203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038449788
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0012-365x(94)90163-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423159
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0095-8956(79)90070-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002846277
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.dam.2012.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042645179
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.dam.2017.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085043773
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.dam.2017.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862858
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.disc.2012.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052496049
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ejc.2010.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031194215
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ejc.2011.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008964037
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejc.2014.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029066804
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ejc.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018773274
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.endm.2014.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014418648
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.tcs.2014.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050175402
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0021-9800(68)80087-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042038190
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0304-3975(03)00225-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043949991
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00207160.2014.941359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029791139
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/09720529.2013.778460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028332300
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/0403037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844628
145 rdf:type schema:CreativeWork
146 https://doi.org/10.12988/ijma.2015.54132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064857150
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2298/aadm140210003b schema:sameAs https://app.dimensions.ai/details/publication/pub.1040749316
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/1967597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673071
151 rdf:type schema:CreativeWork
152 https://doi.org/10.3390/sym9100205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091990537
153 rdf:type schema:CreativeWork
154 https://doi.org/10.4153/cjm-1954-010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263910
155 rdf:type schema:CreativeWork
156 https://doi.org/10.6028/jres.082.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073600152
157 rdf:type schema:CreativeWork
158 https://doi.org/10.7151/dmgt.1106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073620431
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.412856.c schema:alternateName Universidad Autónoma de Guerrero
161 schema:name Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650, Acalpulco Gro., México
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.412865.c schema:alternateName Autonomous University of Zacatecas
164 schema:name Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, Calzada Solidaridad entronque Paseo a la Bufa, 98060, Zacatecas, Zac., México
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.421336.1 schema:alternateName Miami Dade College
167 schema:name Department of Mathematics and Statistics, Florida International University, 11200 SW 8ht Street, 33199, Miami, Florida, USA
168 Department of Mathematics, Miami Dade College, 300 NE Second Ave., Miami, FL 33132, Miami, Florida, USA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...