Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Yi Tao, Zhi Qi Chen, Yan Wang

ABSTRACT

Balinsky–Novikov superalgebras were introduced by Balinsky for constructing super-Vira-soro type Lie superalgebras. In this paper, we give sufficient and necessary conditions for a Lie superalgebra generalized by a Balinsky–Novikov superalgebra with dimension 2|2 to be a quadratic Lie superalgebra.

PAGES

1-14

References to SciGraph publications

Journal

TITLE

Acta Mathematica Sinica, English Series

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10114-018-7210-y

DOI

http://dx.doi.org/10.1007/s10114-018-7210-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110668338


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "Chern Institute of Mathematics, Nankai University, 300071, Tianjin, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "School of Mathematical Science & LPMC, Nankai University, 300071, Tianjin, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhi Qi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Mathematics, Tianjin University, 300350, Tianjin, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0063691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005389591", 
          "https://doi.org/10.1007/bfb0063691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2009.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008542539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(77)90017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(87)90209-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016552808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01077804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019154393", 
          "https://doi.org/10.1007/bf01077804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01077804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019154393", 
          "https://doi.org/10.1007/bf01077804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879908826421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027407681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031964621", 
          "https://doi.org/10.1007/bfb0070929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031964621", 
          "https://doi.org/10.1007/bfb0070929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972700002835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972700002835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/45/22/225201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036321615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)90947-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039032799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00556-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.528999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129055x91000084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062898463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219498812501198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062996080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408078"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Balinsky\u2013Novikov superalgebras were introduced by Balinsky for constructing super-Vira-soro type Lie superalgebras. In this paper, we give sufficient and necessary conditions for a Lie superalgebra generalized by a Balinsky\u2013Novikov superalgebra with dimension 2|2 to be a quadratic Lie superalgebra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10114-018-7210-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040372", 
        "issn": [
          "1439-8516", 
          "1439-7617"
        ], 
        "name": "Acta Mathematica Sinica, English Series", 
        "type": "Periodical"
      }
    ], 
    "name": "Quadratic Lie Superalgebras Generalized by Balinsky\u2013Novikov Superalgebras", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4709d9be579c090a923380949445b7a52223e8de249bdb1e22b710caf6de5b7c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10114-018-7210-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110668338"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10114-018-7210-y", 
      "https://app.dimensions.ai/details/publication/pub.1110668338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57225_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10114-018-7210-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7210-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7210-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7210-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10114-018-7210-y'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      20 PREDICATES      38 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10114-018-7210-y schema:author N7adc06050bee4186a8e4cfef8803d8a5
2 schema:citation sg:pub.10.1007/bf01077804
3 sg:pub.10.1007/bfb0063691
4 sg:pub.10.1007/bfb0070929
5 https://doi.org/10.1016/0001-8708(77)90017-2
6 https://doi.org/10.1016/0021-8693(87)90209-2
7 https://doi.org/10.1016/0370-2693(94)90947-4
8 https://doi.org/10.1016/0550-3213(95)00556-0
9 https://doi.org/10.1016/j.geomphys.2009.09.013
10 https://doi.org/10.1017/s0004972700002835
11 https://doi.org/10.1063/1.528999
12 https://doi.org/10.1080/00927879908826421
13 https://doi.org/10.1088/1751-8113/45/22/225201
14 https://doi.org/10.1142/s0129055x91000084
15 https://doi.org/10.1142/s0219498812501198
16 https://doi.org/10.24033/asens.1496
17 schema:datePublished 2019-02
18 schema:datePublishedReg 2019-02-01
19 schema:description Balinsky–Novikov superalgebras were introduced by Balinsky for constructing super-Vira-soro type Lie superalgebras. In this paper, we give sufficient and necessary conditions for a Lie superalgebra generalized by a Balinsky–Novikov superalgebra with dimension 2|2 to be a quadratic Lie superalgebra.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf sg:journal.1040372
24 schema:name Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras
25 schema:pagination 1-14
26 schema:productId N67b10b0c0038461aa4e40515d1f0c1a9
27 N87597a1a586c4339a934b668d0540895
28 Na1418d635bdc4c678fb35e2b6ae983f2
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110668338
30 https://doi.org/10.1007/s10114-018-7210-y
31 schema:sdDatePublished 2019-04-11T08:24
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N913d1d2f5cfe4044a16fc1f68730e791
34 schema:url https://link.springer.com/10.1007%2Fs10114-018-7210-y
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N42a33a60d94a45b79258b4a23f79cb44 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
39 schema:familyName Wang
40 schema:givenName Yan
41 rdf:type schema:Person
42 N67b10b0c0038461aa4e40515d1f0c1a9 schema:name doi
43 schema:value 10.1007/s10114-018-7210-y
44 rdf:type schema:PropertyValue
45 N7aa544e1edaf49bcb93744a953b08e3a schema:affiliation https://www.grid.ac/institutes/grid.216938.7
46 schema:familyName Tao
47 schema:givenName Yi
48 rdf:type schema:Person
49 N7adc06050bee4186a8e4cfef8803d8a5 rdf:first N7aa544e1edaf49bcb93744a953b08e3a
50 rdf:rest Ne7ca5c0e362c47dd97dd5e624b940e1b
51 N87597a1a586c4339a934b668d0540895 schema:name dimensions_id
52 schema:value pub.1110668338
53 rdf:type schema:PropertyValue
54 N913d1d2f5cfe4044a16fc1f68730e791 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N990aab5f279145a3bacad1201ef9bba6 rdf:first N42a33a60d94a45b79258b4a23f79cb44
57 rdf:rest rdf:nil
58 Na1418d635bdc4c678fb35e2b6ae983f2 schema:name readcube_id
59 schema:value 4709d9be579c090a923380949445b7a52223e8de249bdb1e22b710caf6de5b7c
60 rdf:type schema:PropertyValue
61 Ndc8e31ac87d54100aca417b02c4554bb schema:affiliation https://www.grid.ac/institutes/grid.216938.7
62 schema:familyName Chen
63 schema:givenName Zhi Qi
64 rdf:type schema:Person
65 Ne7ca5c0e362c47dd97dd5e624b940e1b rdf:first Ndc8e31ac87d54100aca417b02c4554bb
66 rdf:rest N990aab5f279145a3bacad1201ef9bba6
67 sg:journal.1040372 schema:issn 1439-7617
68 1439-8516
69 schema:name Acta Mathematica Sinica, English Series
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf01077804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019154393
72 https://doi.org/10.1007/bf01077804
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bfb0063691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005389591
75 https://doi.org/10.1007/bfb0063691
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bfb0070929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031964621
78 https://doi.org/10.1007/bfb0070929
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0001-8708(77)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933045
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0021-8693(87)90209-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016552808
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0370-2693(94)90947-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039032799
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0550-3213(95)00556-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955559
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.geomphys.2009.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008542539
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0004972700002835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033709213
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.528999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106015
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/00927879908826421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027407681
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/1751-8113/45/22/225201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036321615
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1142/s0129055x91000084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898463
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1142/s0219498812501198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996080
101 rdf:type schema:CreativeWork
102 https://doi.org/10.24033/asens.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408078
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.216938.7 schema:alternateName Nankai University
105 schema:name Chern Institute of Mathematics, Nankai University, 300071, Tianjin, P. R. China
106 School of Mathematical Science & LPMC, Nankai University, 300071, Tianjin, P. R. China
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
109 schema:name School of Mathematics, Tianjin University, 300350, Tianjin, P. R. China
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...