Protein futures for Western Europe: potential land use and climate impacts in 2050 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

Elin Röös, Bojana Bajželj, Pete Smith, Mikaela Patel, David Little, Tara Garnett

ABSTRACT

Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels. More... »

PAGES

367-377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10113-016-1013-4

DOI

http://dx.doi.org/10.1007/s10113-016-1013-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052632034


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Food Climate Research Network, Environmental Change Institute, Oxford University, South Parks Road, OX1 3PS, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6\u00f6s", 
        "givenName": "Elin", 
        "id": "sg:person.011456745001.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011456745001.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Engineering, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baj\u017eelj", 
        "givenName": "Bojana", 
        "id": "sg:person.01003011023.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003011023.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Aberdeen", 
          "id": "https://www.grid.ac/institutes/grid.7107.1", 
          "name": [
            "Institute of Biological and Environmental Sciences and ClimateXChange, University of Aberdeen, Aberdeen, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Pete", 
        "id": "sg:person.01317775541.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317775541.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swedish University of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.6341.0", 
          "name": [
            "Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Mikaela", 
        "id": "sg:person.016037610001.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037610001.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stirling", 
          "id": "https://www.grid.ac/institutes/grid.11918.30", 
          "name": [
            "Institute of Aquaculture, University of Stirling, Stirling, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Little", 
        "givenName": "David", 
        "id": "sg:person.01221261076.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221261076.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Food Climate Research Network, Environmental Change Institute, Oxford University, South Parks Road, OX1 3PS, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garnett", 
        "givenName": "Tara", 
        "id": "sg:person.01042324506.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042324506.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1308044111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000022016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2011.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000232684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003905879", 
          "https://doi.org/10.1038/nclimate2353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodpol.2015.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004159542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004162646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1300/j064v22n03_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005188928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006017967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-014-1104-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006342338", 
          "https://doi.org/10.1007/s10584-014-1104-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-014-1104-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006342338", 
          "https://doi.org/10.1007/s10584-014-1104-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008985610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1259855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010811936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0029665109991868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2012.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013147553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014138923", 
          "https://doi.org/10.1038/nature11420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2009.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018057398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018144614", 
          "https://doi.org/10.1038/nature13959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2015.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019182385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agsy.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020734428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2014.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023915861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodpol.2010.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024583280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2006.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024989906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2007.2184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025147434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025472352", 
          "https://doi.org/10.1038/nature10452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodpol.2014.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2014.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025575055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-012-0495-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026295977", 
          "https://doi.org/10.1007/s10584-012-0495-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2010.0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028373826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gb002952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037338284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcbb.12242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038221006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2013.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038585550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.13120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039421766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914216107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039826578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1541-4337.12032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042787778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045887702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047465265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/8/3/035019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048108122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048131164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gfs.2012.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049276849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10806-010-9264-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050694524", 
          "https://doi.org/10.1007/s10806-010-9264-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2008.1509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052643867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/9781780642161.0067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089227935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107152744", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different \u2018protein futures\u2019. The scenarios were as follows: intensive and efficient livestock production using today\u2019s species mix; intensive efficient poultry\u2013dairy production; intensive efficient aquaculture\u2013dairy; artificial meat and dairy; livestock on \u2018ecological leftovers\u2019 (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a \u2018plant-based eating\u2019 scenario. For each scenario, \u2018projected diet\u2019 and \u2018healthy diet\u2019 variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14\u201386 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The \u2018ecological leftover\u2019 scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10113-016-1013-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3956276", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051354", 
        "issn": [
          "1436-3798", 
          "1436-378X"
        ], 
        "name": "Regional Environmental Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Protein futures for Western Europe: potential land use and climate impacts in 2050", 
    "pagination": "367-377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fab3f74fa1828cdcaf5f0f9e9c864545b58bfaec7aee370e8e83c52972e7100e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10113-016-1013-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052632034"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10113-016-1013-4", 
      "https://app.dimensions.ai/details/publication/pub.1052632034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10113-016-1013-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10113-016-1013-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10113-016-1013-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10113-016-1013-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10113-016-1013-4'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10113-016-1013-4 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N18ff93ac19754b0cb5d1122dfd7f8ab2
4 schema:citation sg:pub.10.1007/s10584-012-0495-4
5 sg:pub.10.1007/s10584-014-1104-5
6 sg:pub.10.1007/s10806-010-9264-4
7 sg:pub.10.1038/nature10452
8 sg:pub.10.1038/nature11420
9 sg:pub.10.1038/nature13959
10 sg:pub.10.1038/nclimate2353
11 https://app.dimensions.ai/details/publication/pub.1107152744
12 https://doi.org/10.1001/archinternmed.2009.6
13 https://doi.org/10.1001/archinternmed.2011.2287
14 https://doi.org/10.1016/j.agee.2006.12.022
15 https://doi.org/10.1016/j.agsy.2010.07.005
16 https://doi.org/10.1016/j.enpol.2013.09.046
17 https://doi.org/10.1016/j.envsci.2009.01.006
18 https://doi.org/10.1016/j.envsci.2014.12.001
19 https://doi.org/10.1016/j.foodpol.2010.10.010
20 https://doi.org/10.1016/j.foodpol.2014.10.013
21 https://doi.org/10.1016/j.foodpol.2015.12.012
22 https://doi.org/10.1016/j.gfs.2012.11.008
23 https://doi.org/10.1016/j.gloenvcha.2014.02.004
24 https://doi.org/10.1016/j.jclepro.2014.12.008
25 https://doi.org/10.1016/j.meatsci.2012.04.008
26 https://doi.org/10.1016/j.tifs.2007.12.003
27 https://doi.org/10.1017/s0029665109991868
28 https://doi.org/10.1029/2007gb002952
29 https://doi.org/10.1073/pnas.0914216107
30 https://doi.org/10.1073/pnas.1308044111
31 https://doi.org/10.1079/9781780642161.0067
32 https://doi.org/10.1088/1748-9326/8/3/035019
33 https://doi.org/10.1098/rsif.2015.1001
34 https://doi.org/10.1098/rspb.2008.1509
35 https://doi.org/10.1098/rstb.2007.2184
36 https://doi.org/10.1098/rstb.2010.0127
37 https://doi.org/10.1111/1541-4337.12032
38 https://doi.org/10.1111/gcb.12160
39 https://doi.org/10.1111/gcb.12561
40 https://doi.org/10.1111/gcb.13120
41 https://doi.org/10.1111/gcbb.12242
42 https://doi.org/10.1126/science.1185383
43 https://doi.org/10.1126/science.1259855
44 https://doi.org/10.1300/j064v22n03_10
45 schema:datePublished 2017-02
46 schema:datePublishedReg 2017-02-01
47 schema:description Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N91bb89bb3b35407cac0f7e776df9b566
52 Ndc1601e9e3a440169e7584c6b66acfda
53 sg:journal.1051354
54 schema:name Protein futures for Western Europe: potential land use and climate impacts in 2050
55 schema:pagination 367-377
56 schema:productId N3aed82dde4ca45adbdf8389287ca5906
57 Ndd1ff58506e84580a12c1bec11818838
58 Nf1be8571f0aa46008dca7fbc45af1f2b
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052632034
60 https://doi.org/10.1007/s10113-016-1013-4
61 schema:sdDatePublished 2019-04-11T12:39
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne5a23fc0b63346e29122f6dbafb85abb
64 schema:url https://link.springer.com/10.1007%2Fs10113-016-1013-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0914e872064b4ce6a7895b5f749f7bd0 rdf:first sg:person.016037610001.07
69 rdf:rest N196f5333691c459e883d8052ec0aaf57
70 N18ff93ac19754b0cb5d1122dfd7f8ab2 rdf:first sg:person.011456745001.30
71 rdf:rest Nb3ec0e847e3b4a77bec2f0d3da95211d
72 N196f5333691c459e883d8052ec0aaf57 rdf:first sg:person.01221261076.18
73 rdf:rest N6f4c195a27014c658fc170950d572e6e
74 N3aed82dde4ca45adbdf8389287ca5906 schema:name doi
75 schema:value 10.1007/s10113-016-1013-4
76 rdf:type schema:PropertyValue
77 N6f4c195a27014c658fc170950d572e6e rdf:first sg:person.01042324506.35
78 rdf:rest rdf:nil
79 N91bb89bb3b35407cac0f7e776df9b566 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 N9fead3d7e0fc4492aa82376eb970b771 rdf:first sg:person.01317775541.82
82 rdf:rest N0914e872064b4ce6a7895b5f749f7bd0
83 Nb3ec0e847e3b4a77bec2f0d3da95211d rdf:first sg:person.01003011023.45
84 rdf:rest N9fead3d7e0fc4492aa82376eb970b771
85 Ndc1601e9e3a440169e7584c6b66acfda schema:volumeNumber 17
86 rdf:type schema:PublicationVolume
87 Ndd1ff58506e84580a12c1bec11818838 schema:name dimensions_id
88 schema:value pub.1052632034
89 rdf:type schema:PropertyValue
90 Ne5a23fc0b63346e29122f6dbafb85abb schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nf1be8571f0aa46008dca7fbc45af1f2b schema:name readcube_id
93 schema:value fab3f74fa1828cdcaf5f0f9e9c864545b58bfaec7aee370e8e83c52972e7100e
94 rdf:type schema:PropertyValue
95 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
96 schema:name Environmental Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
99 schema:name Soil Sciences
100 rdf:type schema:DefinedTerm
101 sg:grant.3956276 http://pending.schema.org/fundedItem sg:pub.10.1007/s10113-016-1013-4
102 rdf:type schema:MonetaryGrant
103 sg:journal.1051354 schema:issn 1436-378X
104 1436-3798
105 schema:name Regional Environmental Change
106 rdf:type schema:Periodical
107 sg:person.01003011023.45 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
108 schema:familyName Bajželj
109 schema:givenName Bojana
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003011023.45
111 rdf:type schema:Person
112 sg:person.01042324506.35 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
113 schema:familyName Garnett
114 schema:givenName Tara
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042324506.35
116 rdf:type schema:Person
117 sg:person.011456745001.30 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
118 schema:familyName Röös
119 schema:givenName Elin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011456745001.30
121 rdf:type schema:Person
122 sg:person.01221261076.18 schema:affiliation https://www.grid.ac/institutes/grid.11918.30
123 schema:familyName Little
124 schema:givenName David
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221261076.18
126 rdf:type schema:Person
127 sg:person.01317775541.82 schema:affiliation https://www.grid.ac/institutes/grid.7107.1
128 schema:familyName Smith
129 schema:givenName Pete
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317775541.82
131 rdf:type schema:Person
132 sg:person.016037610001.07 schema:affiliation https://www.grid.ac/institutes/grid.6341.0
133 schema:familyName Patel
134 schema:givenName Mikaela
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037610001.07
136 rdf:type schema:Person
137 sg:pub.10.1007/s10584-012-0495-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026295977
138 https://doi.org/10.1007/s10584-012-0495-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10584-014-1104-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006342338
141 https://doi.org/10.1007/s10584-014-1104-5
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10806-010-9264-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050694524
144 https://doi.org/10.1007/s10806-010-9264-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature10452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472352
147 https://doi.org/10.1038/nature10452
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature11420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138923
150 https://doi.org/10.1038/nature11420
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature13959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018144614
153 https://doi.org/10.1038/nature13959
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nclimate2353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905879
156 https://doi.org/10.1038/nclimate2353
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1107152744 schema:CreativeWork
159 https://doi.org/10.1001/archinternmed.2009.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045887702
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1001/archinternmed.2011.2287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000232684
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.agee.2006.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024989906
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.agsy.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734428
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.enpol.2013.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038585550
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.envsci.2009.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018057398
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.envsci.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025575055
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.foodpol.2010.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024583280
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.foodpol.2014.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561607
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.foodpol.2015.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004159542
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.gfs.2012.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049276849
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.gloenvcha.2014.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023915861
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jclepro.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006017967
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.meatsci.2012.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013147553
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.tifs.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008985610
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1017/s0029665109991868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077926
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/2007gb002952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338284
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.0914216107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039826578
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1073/pnas.1308044111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000022016
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1079/9781780642161.0067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089227935
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/1748-9326/8/3/035019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048108122
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1098/rsif.2015.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019182385
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1098/rspb.2008.1509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643867
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1098/rstb.2007.2184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025147434
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1098/rstb.2010.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028373826
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/1541-4337.12032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042787778
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/gcb.12160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047465265
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/gcb.12561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004162646
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/gcb.13120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039421766
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/gcbb.12242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038221006
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1185383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048131164
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1259855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010811936
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1300/j064v22n03_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005188928
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.11918.30 schema:alternateName University of Stirling
226 schema:name Institute of Aquaculture, University of Stirling, Stirling, UK
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
229 schema:name Food Climate Research Network, Environmental Change Institute, Oxford University, South Parks Road, OX1 3PS, Oxford, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
232 schema:name Department of Engineering, University of Cambridge, Cambridge, UK
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.6341.0 schema:alternateName Swedish University of Agricultural Sciences
235 schema:name Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.7107.1 schema:alternateName University of Aberdeen
238 schema:name Institute of Biological and Environmental Sciences and ClimateXChange, University of Aberdeen, Aberdeen, UK
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...