Are South Indian farmers adaptable to global change? A case in an Andhra Pradesh catchment basin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

S. Aulong, B. Chaudhuri, L. Farnier, S. Galab, J. Guerrin, H. Himanshu, P. Prudhvikar Reddy

ABSTRACT

Global changes are already having an impact on South Indian farmers. Climate change is affecting the agricultural sector since it is dependent on climatic conditions and water resource availability. The impacts tend to be greater in semi-arid hard rock areas with few water resources. Furthermore, South India area is experiencing a profound agrarian crisis, which is linked, among others, to debt and credit problems. The study reported in this paper aims to develop a methodology to compare and rank farmers according to their ability to adapt to global change. The definition of adaptive capacity is based on a livelihood assets approach. Indicators are evaluated through individual surveys among farmers, then, weighted using the analytic hierarchy process and aggregated via compromise programming. The result is a standardized score measuring the distance of each farmer from an ideal adaptive capacity. Farmers are ranked according to this distance, which allows a comparison of their relative ability to adapt. At the basin scale, it shows that the geographic position of farmers is a significant factor in adaptation performance. The proximity of an administrative center contributes to an increase of their adaptive capacity. Small farming areas limit the adaptive capacities of marginal and small farmers while the largest farmers are constrained by economic factors such as large loans. These study findings offer interesting indications on the variability of farmers’ weaknesses and are bringing a better understanding of the causes of poor performance. More... »

PAGES

423-436

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10113-011-0258-1

DOI

http://dx.doi.org/10.1007/s10113-011-0258-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028526528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "BRGM Water Economics Unit, 1039 rue de Pinville, 34000, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aulong", 
        "givenName": "S.", 
        "id": "sg:person.0627532402.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627532402.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSH, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaudhuri", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Montpellier SupAgro", 
          "id": "https://www.grid.ac/institutes/grid.434209.8", 
          "name": [
            "SupAgro, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farnier", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Economic and Social Studies", 
          "id": "https://www.grid.ac/institutes/grid.473435.2", 
          "name": [
            "CESS, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galab", 
        "givenName": "S.", 
        "id": "sg:person.011241213317.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011241213317.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.48142.3b", 
          "name": [
            "CEMAGREF, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerrin", 
        "givenName": "J.", 
        "id": "sg:person.015516601552.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015516601552.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSH, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himanshu", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Economic and Social Studies", 
          "id": "https://www.grid.ac/institutes/grid.473435.2", 
          "name": [
            "CESS, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prudhvikar Reddy", 
        "givenName": "P.", 
        "id": "sg:person.012036573717.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036573717.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2004wr003137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001700645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7660.2004.00353.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012777713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crte.2004.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015808230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73703-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018360464", 
          "https://doi.org/10.1007/978-3-540-73703-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73703-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018360464", 
          "https://doi.org/10.1007/978-3-540-73703-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2004.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024110183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029521131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2006.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034900565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2006.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035415124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-3780(01)00004-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039809136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "Global changes are already having an impact on South Indian farmers. Climate change is affecting the agricultural sector since it is dependent on climatic conditions and water resource availability. The impacts tend to be greater in semi-arid hard rock areas with few water resources. Furthermore, South India area is experiencing a profound agrarian crisis, which is linked, among others, to debt and credit problems. The study reported in this paper aims to develop a methodology to compare and rank farmers according to their ability to adapt to global change. The definition of adaptive capacity is based on a livelihood assets approach. Indicators are evaluated through individual surveys among farmers, then, weighted using the analytic hierarchy process and aggregated via compromise programming. The result is a standardized score measuring the distance of each farmer from an ideal adaptive capacity. Farmers are ranked according to this distance, which allows a comparison of their relative ability to adapt. At the basin scale, it shows that the geographic position of farmers is a significant factor in adaptation performance. The proximity of an administrative center contributes to an increase of their adaptive capacity. Small farming areas limit the adaptive capacities of marginal and small farmers while the largest farmers are constrained by economic factors such as large loans. These study findings offer interesting indications on the variability of farmers\u2019 weaknesses and are bringing a better understanding of the causes of poor performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10113-011-0258-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051354", 
        "issn": [
          "1436-3798", 
          "1436-378X"
        ], 
        "name": "Regional Environmental Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Are South Indian farmers adaptable to global change? A case in an Andhra Pradesh catchment basin", 
    "pagination": "423-436", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87e45a58651694f3dd489311cfa00266ab3b9bfc5e9eda105afaba7318b299b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10113-011-0258-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028526528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10113-011-0258-1", 
      "https://app.dimensions.ai/details/publication/pub.1028526528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10113-011-0258-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10113-011-0258-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10113-011-0258-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10113-011-0258-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10113-011-0258-1'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10113-011-0258-1 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N415979e379374480b4c48ebc18d52fba
4 schema:citation sg:pub.10.1007/978-3-540-73703-2
5 https://doi.org/10.1016/j.crte.2004.11.004
6 https://doi.org/10.1016/j.gloenvcha.2004.01.001
7 https://doi.org/10.1016/j.gloenvcha.2006.05.002
8 https://doi.org/10.1016/j.gloenvcha.2006.11.009
9 https://doi.org/10.1016/j.gloenvcha.2007.09.001
10 https://doi.org/10.1016/s0959-3780(01)00004-8
11 https://doi.org/10.1029/2004wr003137
12 https://doi.org/10.1111/j.1467-7660.2004.00353.x
13 schema:datePublished 2012-09
14 schema:datePublishedReg 2012-09-01
15 schema:description Global changes are already having an impact on South Indian farmers. Climate change is affecting the agricultural sector since it is dependent on climatic conditions and water resource availability. The impacts tend to be greater in semi-arid hard rock areas with few water resources. Furthermore, South India area is experiencing a profound agrarian crisis, which is linked, among others, to debt and credit problems. The study reported in this paper aims to develop a methodology to compare and rank farmers according to their ability to adapt to global change. The definition of adaptive capacity is based on a livelihood assets approach. Indicators are evaluated through individual surveys among farmers, then, weighted using the analytic hierarchy process and aggregated via compromise programming. The result is a standardized score measuring the distance of each farmer from an ideal adaptive capacity. Farmers are ranked according to this distance, which allows a comparison of their relative ability to adapt. At the basin scale, it shows that the geographic position of farmers is a significant factor in adaptation performance. The proximity of an administrative center contributes to an increase of their adaptive capacity. Small farming areas limit the adaptive capacities of marginal and small farmers while the largest farmers are constrained by economic factors such as large loans. These study findings offer interesting indications on the variability of farmers’ weaknesses and are bringing a better understanding of the causes of poor performance.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nb1fa098df38d45a3bf28d26cded9c83c
20 Ne1b949648f2a4862bffa6fcc7cccbd0c
21 sg:journal.1051354
22 schema:name Are South Indian farmers adaptable to global change? A case in an Andhra Pradesh catchment basin
23 schema:pagination 423-436
24 schema:productId N18bb33dc45404c35b999b4451d65467a
25 N7478775d6e4f4b539b9322ca67a5e6ec
26 Naa35d87354b841708c856eed398be94a
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526528
28 https://doi.org/10.1007/s10113-011-0258-1
29 schema:sdDatePublished 2019-04-10T15:46
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N5e59c51369264c1abf9d252a8feb7ac2
32 schema:url http://link.springer.com/10.1007/s10113-011-0258-1
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N096be2eefdfe4c1eb4117e51deff9d73 schema:name BRGM Water Economics Unit, 1039 rue de Pinville, 34000, Montpellier, France
37 rdf:type schema:Organization
38 N156dd08f789645d5a051c739365c37b2 schema:affiliation https://www.grid.ac/institutes/grid.434209.8
39 schema:familyName Farnier
40 schema:givenName L.
41 rdf:type schema:Person
42 N18bb33dc45404c35b999b4451d65467a schema:name readcube_id
43 schema:value 87e45a58651694f3dd489311cfa00266ab3b9bfc5e9eda105afaba7318b299b6
44 rdf:type schema:PropertyValue
45 N26aa9391df9f42eaaf2dfc41fcb768bc rdf:first N5bb50ac050674580be994b17e1098b45
46 rdf:rest Nbb201749ee954f7aba6d0fb297146343
47 N415979e379374480b4c48ebc18d52fba rdf:first sg:person.0627532402.15
48 rdf:rest Nfed28a82bf90413fa51499e28da24b26
49 N5bb50ac050674580be994b17e1098b45 schema:affiliation N608316f6db7147b3b577a3dc3b5adf73
50 schema:familyName Himanshu
51 schema:givenName H.
52 rdf:type schema:Person
53 N5e59c51369264c1abf9d252a8feb7ac2 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N608316f6db7147b3b577a3dc3b5adf73 schema:name CSH, New Delhi, India
56 rdf:type schema:Organization
57 N6adf0ef3a2a64e2bb1dac086647fac0c schema:affiliation N9f66f76564884d91bd74d25c21321a0a
58 schema:familyName Chaudhuri
59 schema:givenName B.
60 rdf:type schema:Person
61 N7478775d6e4f4b539b9322ca67a5e6ec schema:name dimensions_id
62 schema:value pub.1028526528
63 rdf:type schema:PropertyValue
64 N9f66f76564884d91bd74d25c21321a0a schema:name CSH, New Delhi, India
65 rdf:type schema:Organization
66 Naa35d87354b841708c856eed398be94a schema:name doi
67 schema:value 10.1007/s10113-011-0258-1
68 rdf:type schema:PropertyValue
69 Nb16b472daa0742f2b048f1841f625592 rdf:first N156dd08f789645d5a051c739365c37b2
70 rdf:rest Nd278b2350648434bb4a9db8a488ba0a1
71 Nb1fa098df38d45a3bf28d26cded9c83c schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 Nbb201749ee954f7aba6d0fb297146343 rdf:first sg:person.012036573717.59
74 rdf:rest rdf:nil
75 Nd278b2350648434bb4a9db8a488ba0a1 rdf:first sg:person.011241213317.16
76 rdf:rest Nd2826f4d2b10469d8e278d6d824107c6
77 Nd2826f4d2b10469d8e278d6d824107c6 rdf:first sg:person.015516601552.47
78 rdf:rest N26aa9391df9f42eaaf2dfc41fcb768bc
79 Ne1b949648f2a4862bffa6fcc7cccbd0c schema:volumeNumber 12
80 rdf:type schema:PublicationVolume
81 Nfed28a82bf90413fa51499e28da24b26 rdf:first N6adf0ef3a2a64e2bb1dac086647fac0c
82 rdf:rest Nb16b472daa0742f2b048f1841f625592
83 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
84 schema:name Economics
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
87 schema:name Applied Economics
88 rdf:type schema:DefinedTerm
89 sg:journal.1051354 schema:issn 1436-378X
90 1436-3798
91 schema:name Regional Environmental Change
92 rdf:type schema:Periodical
93 sg:person.011241213317.16 schema:affiliation https://www.grid.ac/institutes/grid.473435.2
94 schema:familyName Galab
95 schema:givenName S.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011241213317.16
97 rdf:type schema:Person
98 sg:person.012036573717.59 schema:affiliation https://www.grid.ac/institutes/grid.473435.2
99 schema:familyName Prudhvikar Reddy
100 schema:givenName P.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036573717.59
102 rdf:type schema:Person
103 sg:person.015516601552.47 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
104 schema:familyName Guerrin
105 schema:givenName J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015516601552.47
107 rdf:type schema:Person
108 sg:person.0627532402.15 schema:affiliation N096be2eefdfe4c1eb4117e51deff9d73
109 schema:familyName Aulong
110 schema:givenName S.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627532402.15
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-540-73703-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018360464
114 https://doi.org/10.1007/978-3-540-73703-2
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.crte.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015808230
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.gloenvcha.2004.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110183
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.gloenvcha.2006.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035415124
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.gloenvcha.2006.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034900565
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.gloenvcha.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029521131
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0959-3780(01)00004-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039809136
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/2004wr003137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001700645
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1467-7660.2004.00353.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012777713
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.434209.8 schema:alternateName Montpellier SupAgro
133 schema:name SupAgro, Montpellier, France
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.473435.2 schema:alternateName Centre for Economic and Social Studies
136 schema:name CESS, Hyderabad, India
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.48142.3b schema:alternateName National Research Institute of Science and Technology for Environment and Agriculture
139 schema:name CEMAGREF, Montpellier, France
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...