Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-09

AUTHORS

M. Du, H. Yang, Q. Chang, K. Minami, T. Hatta

ABSTRACT

Caesium-137 (137Cs) has been widely used for the determination of soil erosion and sediment transport rate. However, depth distribution patterns of 137Cs in the soil profile have not been considered. As a result, the erosion rates may be over-estimated or underestimated. This paper presents the depth distribution of 137Cs fallout in different soil profiles using published data. Three types of depth distribution functions of 137Cs are given by using statistical regression methods, the exponential type, the peak type and the decreasing type (including uniform distribution). Relationships between 137Cs loss and soil erosion rate are given by introducing the regression functions. The influence of depth distribution of 137Cs on the estimation of the soil erosion rate was simulated. Simulation results showed that very different soil erosion rates could be deduced for different depth distributions when 137Cs loss is the same, which indicates that the depth distribution pattern should be considered when soil erosion is estimated by using 137Cs. Simulation results also suggested that it is most important to determine the depth distribution of 137Cs near the soil surface and the annual relative loss of 137Cs by using the depth distribution of 137Cs as a criterion to estimate the soil erosion rate. More... »

PAGES

23-33

References to SciGraph publications

  • 1993-07. Adsorption of cesium on minerals: A review in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 1991-03. Distribution of fallout radionuclides through soil surface layer in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10112-998-0003-1

    DOI

    http://dx.doi.org/10.1007/s10112-998-0003-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026159476


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute for Agro-Environmental Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410826.9", 
              "name": [
                "National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, 3058604, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "M.", 
            "id": "sg:person.012434744165.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012434744165.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan International Research Center for Agricultural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.452611.5", 
              "name": [
                "Japan International Research Center for Agricultural Sciences, 1-2 Ohwashi, 3058686, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "H.", 
            "id": "sg:person.014601062176.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601062176.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kumamoto University", 
              "id": "https://www.grid.ac/institutes/grid.274841.c", 
              "name": [
                "Department of Environmental Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, 8600862, Kumamoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Q.", 
            "id": "sg:person.011014316143.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014316143.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Agro-Environmental Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410826.9", 
              "name": [
                "National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, 3058604, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Minami", 
            "givenName": "K.", 
            "id": "sg:person.014557400757.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557400757.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan International Research Center for Agricultural Sciences", 
              "id": "https://www.grid.ac/institutes/grid.452611.5", 
              "name": [
                "Japan International Research Center for Agricultural Sciences, 1-2 Ohwashi, 3058686, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hatta", 
            "givenName": "T.", 
            "id": "sg:person.0621261777.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621261777.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02060546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012430748", 
              "https://doi.org/10.1007/bf02060546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02060546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012430748", 
              "https://doi.org/10.1007/bf02060546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/sr9800119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023069814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ldr.3400050106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023920244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0265-931x(90)90034-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024834054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0265-931x(90)90034-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024834054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0341-8162(87)80018-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024935155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-7061(95)00030-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028964611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4141/cjss83-061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029251907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0341-8162(96)00002-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032218511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02219872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035526305", 
              "https://doi.org/10.1007/bf02219872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02219872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035526305", 
              "https://doi.org/10.1007/bf02219872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02219872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035526305", 
              "https://doi.org/10.1007/bf02219872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1991.tb00099.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036814282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00010694-196001000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038230805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00010694-196001000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038230805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ldr.3400020302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047542669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00010694-199803000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060290947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00010694-199803000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060290947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00010694-199803000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060290947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/jeq1990.00472425001900020006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069002995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1974.03615995003800010042x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069041493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1981.03615995004500060035x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069043672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1986.03615995005000050044x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069045156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1996.03615995006000040035x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069048180"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-09", 
        "datePublishedReg": "1998-09-01", 
        "description": "Caesium-137 (137Cs) has been widely used for the determination of soil erosion and sediment transport rate. However, depth distribution patterns of 137Cs in the soil profile have not been considered. As a result, the erosion rates may be over-estimated or underestimated. This paper presents the depth distribution of 137Cs fallout in different soil profiles using published data. Three types of depth distribution functions of 137Cs are given by using statistical regression methods, the exponential type, the peak type and the decreasing type (including uniform distribution). Relationships between 137Cs loss and soil erosion rate are given by introducing the regression functions. The influence of depth distribution of 137Cs on the estimation of the soil erosion rate was simulated. Simulation results showed that very different soil erosion rates could be deduced for different depth distributions when 137Cs loss is the same, which indicates that the depth distribution pattern should be considered when soil erosion is estimated by using 137Cs. Simulation results also suggested that it is most important to determine the depth distribution of 137Cs near the soil surface and the annual relative loss of 137Cs by using the depth distribution of 137Cs as a criterion to estimate the soil erosion rate.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10112-998-0003-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1157727", 
            "issn": [
              "1432-9492"
            ], 
            "name": "Sciences of Soils", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate", 
        "pagination": "23-33", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7c9f42f1ffa0ff6e41edbc2d2b6f476698ad18eea83952e28fd156b996e609e6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10112-998-0003-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026159476"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10112-998-0003-1", 
          "https://app.dimensions.ai/details/publication/pub.1026159476"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10112-998-0003-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10112-998-0003-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10112-998-0003-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10112-998-0003-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10112-998-0003-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10112-998-0003-1 schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N130335ab38a64b9ebc562f1c9c0a174c
    4 schema:citation sg:pub.10.1007/bf02060546
    5 sg:pub.10.1007/bf02219872
    6 https://doi.org/10.1002/ldr.3400020302
    7 https://doi.org/10.1002/ldr.3400050106
    8 https://doi.org/10.1016/0016-7061(95)00030-r
    9 https://doi.org/10.1016/0265-931x(90)90034-s
    10 https://doi.org/10.1016/0341-8162(96)00002-1
    11 https://doi.org/10.1016/s0341-8162(87)80018-8
    12 https://doi.org/10.1071/sr9800119
    13 https://doi.org/10.1097/00010694-196001000-00004
    14 https://doi.org/10.1097/00010694-199803000-00010
    15 https://doi.org/10.1111/j.1365-2389.1991.tb00099.x
    16 https://doi.org/10.2134/jeq1990.00472425001900020006x
    17 https://doi.org/10.2136/sssaj1974.03615995003800010042x
    18 https://doi.org/10.2136/sssaj1981.03615995004500060035x
    19 https://doi.org/10.2136/sssaj1986.03615995005000050044x
    20 https://doi.org/10.2136/sssaj1996.03615995006000040035x
    21 https://doi.org/10.4141/cjss83-061
    22 schema:datePublished 1998-09
    23 schema:datePublishedReg 1998-09-01
    24 schema:description Caesium-137 (137Cs) has been widely used for the determination of soil erosion and sediment transport rate. However, depth distribution patterns of 137Cs in the soil profile have not been considered. As a result, the erosion rates may be over-estimated or underestimated. This paper presents the depth distribution of 137Cs fallout in different soil profiles using published data. Three types of depth distribution functions of 137Cs are given by using statistical regression methods, the exponential type, the peak type and the decreasing type (including uniform distribution). Relationships between 137Cs loss and soil erosion rate are given by introducing the regression functions. The influence of depth distribution of 137Cs on the estimation of the soil erosion rate was simulated. Simulation results showed that very different soil erosion rates could be deduced for different depth distributions when 137Cs loss is the same, which indicates that the depth distribution pattern should be considered when soil erosion is estimated by using 137Cs. Simulation results also suggested that it is most important to determine the depth distribution of 137Cs near the soil surface and the annual relative loss of 137Cs by using the depth distribution of 137Cs as a criterion to estimate the soil erosion rate.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Na732d623a5db4f55b639b7e85a7f1001
    29 Ne6ca0df6322b45f398851a52f8c990fc
    30 sg:journal.1157727
    31 schema:name Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate
    32 schema:pagination 23-33
    33 schema:productId Nd5e33510827142c09796dc87bb9b31eb
    34 Ne99b16ca6ac84c65a76abbeb3022cb0e
    35 Nf8adc67482e44509aa2efa9b869f5e77
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026159476
    37 https://doi.org/10.1007/s10112-998-0003-1
    38 schema:sdDatePublished 2019-04-11T09:59
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N3a2451790dcc4e7681384cf56e3be154
    41 schema:url https://link.springer.com/10.1007%2Fs10112-998-0003-1
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N0c3a431fd533448fab032c5e8d6181e0 rdf:first sg:person.014557400757.25
    46 rdf:rest N66b45e380fed46a68dd3174d77376f31
    47 N130335ab38a64b9ebc562f1c9c0a174c rdf:first sg:person.012434744165.53
    48 rdf:rest Nd3e0ea894bcf4029b9f1da9cd34466fc
    49 N3a2451790dcc4e7681384cf56e3be154 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N66b45e380fed46a68dd3174d77376f31 rdf:first sg:person.0621261777.37
    52 rdf:rest rdf:nil
    53 Na732d623a5db4f55b639b7e85a7f1001 schema:volumeNumber 3
    54 rdf:type schema:PublicationVolume
    55 Nc6fde252353648c18a88c50f027ec847 rdf:first sg:person.011014316143.69
    56 rdf:rest N0c3a431fd533448fab032c5e8d6181e0
    57 Nd3e0ea894bcf4029b9f1da9cd34466fc rdf:first sg:person.014601062176.89
    58 rdf:rest Nc6fde252353648c18a88c50f027ec847
    59 Nd5e33510827142c09796dc87bb9b31eb schema:name doi
    60 schema:value 10.1007/s10112-998-0003-1
    61 rdf:type schema:PropertyValue
    62 Ne6ca0df6322b45f398851a52f8c990fc schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 Ne99b16ca6ac84c65a76abbeb3022cb0e schema:name readcube_id
    65 schema:value 7c9f42f1ffa0ff6e41edbc2d2b6f476698ad18eea83952e28fd156b996e609e6
    66 rdf:type schema:PropertyValue
    67 Nf8adc67482e44509aa2efa9b869f5e77 schema:name dimensions_id
    68 schema:value pub.1026159476
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Environmental Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Soil Sciences
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1157727 schema:issn 1432-9492
    77 schema:name Sciences of Soils
    78 rdf:type schema:Periodical
    79 sg:person.011014316143.69 schema:affiliation https://www.grid.ac/institutes/grid.274841.c
    80 schema:familyName Chang
    81 schema:givenName Q.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014316143.69
    83 rdf:type schema:Person
    84 sg:person.012434744165.53 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
    85 schema:familyName Du
    86 schema:givenName M.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012434744165.53
    88 rdf:type schema:Person
    89 sg:person.014557400757.25 schema:affiliation https://www.grid.ac/institutes/grid.410826.9
    90 schema:familyName Minami
    91 schema:givenName K.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557400757.25
    93 rdf:type schema:Person
    94 sg:person.014601062176.89 schema:affiliation https://www.grid.ac/institutes/grid.452611.5
    95 schema:familyName Yang
    96 schema:givenName H.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601062176.89
    98 rdf:type schema:Person
    99 sg:person.0621261777.37 schema:affiliation https://www.grid.ac/institutes/grid.452611.5
    100 schema:familyName Hatta
    101 schema:givenName T.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621261777.37
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf02060546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012430748
    105 https://doi.org/10.1007/bf02060546
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf02219872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035526305
    108 https://doi.org/10.1007/bf02219872
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/ldr.3400020302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542669
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/ldr.3400050106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023920244
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0016-7061(95)00030-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1028964611
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0265-931x(90)90034-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1024834054
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0341-8162(96)00002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032218511
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0341-8162(87)80018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024935155
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1071/sr9800119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069814
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1097/00010694-196001000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038230805
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1097/00010694-199803000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060290947
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1111/j.1365-2389.1991.tb00099.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036814282
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.2134/jeq1990.00472425001900020006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069002995
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.2136/sssaj1974.03615995003800010042x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069041493
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.2136/sssaj1981.03615995004500060035x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043672
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.2136/sssaj1986.03615995005000050044x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069045156
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.2136/sssaj1996.03615995006000040035x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069048180
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.4141/cjss83-061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029251907
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.274841.c schema:alternateName Kumamoto University
    143 schema:name Department of Environmental Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, 8600862, Kumamoto, Japan
    144 rdf:type schema:Organization
    145 https://www.grid.ac/institutes/grid.410826.9 schema:alternateName National Institute for Agro-Environmental Sciences
    146 schema:name National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, 3058604, Tsukuba, Ibaraki, Japan
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.452611.5 schema:alternateName Japan International Research Center for Agricultural Sciences
    149 schema:name Japan International Research Center for Agricultural Sciences, 1-2 Ohwashi, 3058686, Tsukuba, Ibaraki, Japan
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...