A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Young Sik Yoon, Dong-Han Ham, Wan Chul Yoon

ABSTRACT

This study proposes a new method for modelling and analysing human-related accidents. It integrates Human Factors Analysis and Classification System (HFACS), which addresses most of the socio-technical system levels and offers a comprehensive failure taxonomy for analysing human errors, and activity theory (AT)-based approach, which provides an effective way for considering various contextual factors systematically in accident investigation. By combining them, the proposed method makes it more efficient to use the concepts and principles of AT. Additionally, it can help analysts use HFACS taxonomy more coherently to identify meaningful causal factors with a sound theoretical basis of human activities. Therefore, the proposed method can be effectively used to mitigate the limitations of traditional approaches to accident analysis, such as over-relying on a causality model and sticking to a root cause, by making analysts look at an accident from a range of perspectives. To demonstrate the usefulness of the proposed method, we conducted a case study in nuclear power plants. Through the case study, we could confirm that it would be a useful method for modelling and analysing human-related accidents, enabling analysts to identify a plausible set of causal factors efficiently in a methodical consideration of contextual backgrounds surrounding human activities. More... »

PAGES

759-783

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10111-017-0433-3

DOI

http://dx.doi.org/10.1007/s10111-017-0433-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091499982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Nuclear Safety", 
          "id": "https://www.grid.ac/institutes/grid.464612.3", 
          "name": [
            "Department of Safety Standard, Korea Institute of Nuclear Safety, Daejon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Young Sik", 
        "id": "sg:person.015157352222.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157352222.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Industrial Engineering, Chonnam National University, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ham", 
        "givenName": "Dong-Han", 
        "id": "sg:person.012037066427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037066427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Wan Chul", 
        "id": "sg:person.010335045345.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335045345.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jlp.2015.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001747995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4375(02)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003058418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3357/asem.2228.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003850654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2015.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006034143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006427058", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0445-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006427058", 
          "https://doi.org/10.1007/978-1-4615-0445-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0445-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006427058", 
          "https://doi.org/10.1007/978-1-4615-0445-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2008.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007167468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008855055", 
          "https://doi.org/10.1007/pl00011521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14639220903536559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009429199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2016.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011400195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2015.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012972292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013429979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3357/asem.2913.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015386306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2006.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015815559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apergo.2015.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015917884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2011.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016620190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17730/humo.52.1.u305r18277724374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018056913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-007-0070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250957", 
          "https://doi.org/10.1007/s10111-007-0070-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-007-0070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250957", 
          "https://doi.org/10.1007/s10111-007-0070-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aris.1440380103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020005375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aris.1440380103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020005375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-6870(02)00010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022957918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apergo.2004.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024041994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.outlook.2004.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025016229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2008.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025178622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0953-5438(01)00039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025350383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/306412.306431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026496270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-007-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874164", 
          "https://doi.org/10.1007/s10111-007-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-007-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874164", 
          "https://doi.org/10.1007/s10111-007-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3357/amhp.4218.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027268056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlp.2013.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027421425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2013.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027619725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7535(00)00036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028424544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2009.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029479577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-008-0112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030492310", 
          "https://doi.org/10.1007/s10111-008-0112-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-008-0112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030492310", 
          "https://doi.org/10.1007/s10111-008-0112-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-155860808-5/50011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-003-0131-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032667893", 
          "https://doi.org/10.1007/s10111-003-0131-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2013.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034425760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2013.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036014893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2005.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037123008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2011.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038100101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-015-0343-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038801324", 
          "https://doi.org/10.1007/s10111-015-0343-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhcs.2012.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040430078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apergo.2004.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044217978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-40891-6_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044624230", 
          "https://doi.org/10.1007/3-540-40891-6_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2011.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046516335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2013.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046991671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2010.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047520067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cppeds.2015.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047569227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154193120705100208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064049862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154193120705100208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064049862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1748006x13485563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064073464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1748006x13485563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064073464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1518/001872007x312469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067596772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1518/001872007x312469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067596772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3127/ajis.v13i2.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070995059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074957349", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077309699", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-017-0426-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090384882", 
          "https://doi.org/10.1007/s10111-017-0426-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10111-017-0426-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090384882", 
          "https://doi.org/10.1007/s10111-017-0426-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ase.1999.802088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093183100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b17206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095907726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315587394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095937851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "This study proposes a new method for modelling and analysing human-related accidents. It integrates Human Factors Analysis and Classification System (HFACS), which addresses most of the socio-technical system levels and offers a comprehensive failure taxonomy for analysing human errors, and activity theory (AT)-based approach, which provides an effective way for considering various contextual factors systematically in accident investigation. By combining them, the proposed method makes it more efficient to use the concepts and principles of AT. Additionally, it can help analysts use HFACS taxonomy more coherently to identify meaningful causal factors with a sound theoretical basis of human activities. Therefore, the proposed method can be effectively used to mitigate the limitations of traditional approaches to accident analysis, such as over-relying on a causality model and sticking to a root cause, by making analysts look at an accident from a range of perspectives. To demonstrate the usefulness of the proposed method, we conducted a case study in nuclear power plants. Through the case study, we could confirm that it would be a useful method for modelling and analysing human-related accidents, enabling analysts to identify a plausible set of causal factors efficiently in a methodical consideration of contextual backgrounds surrounding human activities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10111-017-0433-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1029630", 
        "issn": [
          "1435-5558", 
          "1435-5566"
        ], 
        "name": "Cognition, Technology & Work", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method", 
    "pagination": "759-783", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da0a1258156ee178091775baa660ff9b71ff0db1373a133dd7796dc4e9f7e1b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10111-017-0433-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091499982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10111-017-0433-3", 
      "https://app.dimensions.ai/details/publication/pub.1091499982"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10111-017-0433-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10111-017-0433-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10111-017-0433-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10111-017-0433-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10111-017-0433-3'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      83 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10111-017-0433-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1ae33586aa294f2881dcab17c719e388
4 schema:citation sg:pub.10.1007/3-540-40891-6_35
5 sg:pub.10.1007/978-1-4615-0445-0
6 sg:pub.10.1007/pl00011521
7 sg:pub.10.1007/s10111-003-0131-1
8 sg:pub.10.1007/s10111-007-0070-3
9 sg:pub.10.1007/s10111-007-0104-x
10 sg:pub.10.1007/s10111-008-0112-5
11 sg:pub.10.1007/s10111-015-0343-1
12 sg:pub.10.1007/s10111-017-0426-2
13 https://app.dimensions.ai/details/publication/pub.1006427058
14 https://app.dimensions.ai/details/publication/pub.1074957349
15 https://app.dimensions.ai/details/publication/pub.1077309699
16 https://doi.org/10.1002/aris.1440380103
17 https://doi.org/10.1016/b978-155860808-5/50011-3
18 https://doi.org/10.1016/j.aap.2005.10.013
19 https://doi.org/10.1016/j.aap.2008.06.013
20 https://doi.org/10.1016/j.aap.2009.09.005
21 https://doi.org/10.1016/j.aap.2010.02.018
22 https://doi.org/10.1016/j.aap.2010.07.003
23 https://doi.org/10.1016/j.aap.2013.02.041
24 https://doi.org/10.1016/j.aap.2013.05.006
25 https://doi.org/10.1016/j.aap.2013.07.027
26 https://doi.org/10.1016/j.apergo.2004.10.002
27 https://doi.org/10.1016/j.apergo.2004.12.002
28 https://doi.org/10.1016/j.apergo.2015.07.018
29 https://doi.org/10.1016/j.athoracsur.2006.11.002
30 https://doi.org/10.1016/j.cppeds.2015.10.001
31 https://doi.org/10.1016/j.ijhcs.2012.01.007
32 https://doi.org/10.1016/j.jlp.2013.11.003
33 https://doi.org/10.1016/j.jlp.2015.01.019
34 https://doi.org/10.1016/j.outlook.2004.12.004
35 https://doi.org/10.1016/j.ress.2015.03.010
36 https://doi.org/10.1016/j.ress.2016.01.013
37 https://doi.org/10.1016/j.ssci.2008.09.012
38 https://doi.org/10.1016/j.ssci.2011.02.005
39 https://doi.org/10.1016/j.ssci.2011.05.007
40 https://doi.org/10.1016/j.ssci.2011.11.009
41 https://doi.org/10.1016/j.ssci.2013.06.009
42 https://doi.org/10.1016/j.ssci.2015.09.028
43 https://doi.org/10.1016/s0003-6870(02)00010-8
44 https://doi.org/10.1016/s0022-4375(02)00032-4
45 https://doi.org/10.1016/s0925-7535(00)00036-9
46 https://doi.org/10.1016/s0953-5438(01)00039-x
47 https://doi.org/10.1080/14639220903536559
48 https://doi.org/10.1109/ase.1999.802088
49 https://doi.org/10.1145/306412.306431
50 https://doi.org/10.1177/154193120705100208
51 https://doi.org/10.1177/1748006x13485563
52 https://doi.org/10.1201/9781315587394
53 https://doi.org/10.1201/b17206
54 https://doi.org/10.1518/001872007x312469
55 https://doi.org/10.17730/humo.52.1.u305r18277724374
56 https://doi.org/10.3127/ajis.v13i2.40
57 https://doi.org/10.3357/amhp.4218.2015
58 https://doi.org/10.3357/asem.2228.2008
59 https://doi.org/10.3357/asem.2913.2011
60 schema:datePublished 2017-11
61 schema:datePublishedReg 2017-11-01
62 schema:description This study proposes a new method for modelling and analysing human-related accidents. It integrates Human Factors Analysis and Classification System (HFACS), which addresses most of the socio-technical system levels and offers a comprehensive failure taxonomy for analysing human errors, and activity theory (AT)-based approach, which provides an effective way for considering various contextual factors systematically in accident investigation. By combining them, the proposed method makes it more efficient to use the concepts and principles of AT. Additionally, it can help analysts use HFACS taxonomy more coherently to identify meaningful causal factors with a sound theoretical basis of human activities. Therefore, the proposed method can be effectively used to mitigate the limitations of traditional approaches to accident analysis, such as over-relying on a causality model and sticking to a root cause, by making analysts look at an accident from a range of perspectives. To demonstrate the usefulness of the proposed method, we conducted a case study in nuclear power plants. Through the case study, we could confirm that it would be a useful method for modelling and analysing human-related accidents, enabling analysts to identify a plausible set of causal factors efficiently in a methodical consideration of contextual backgrounds surrounding human activities.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree true
66 schema:isPartOf N360cdc2b49aa49968e892344c08054f5
67 N77e060b7a75049ed9a4a85f9cefe17d9
68 sg:journal.1029630
69 schema:name A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method
70 schema:pagination 759-783
71 schema:productId N4f177eac2b9941939a3b9c2f557c9be0
72 Nd223f9e314cb4ac38b93a34f12f36590
73 Nfbdfb05f87fd427682e922142a30ecb0
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091499982
75 https://doi.org/10.1007/s10111-017-0433-3
76 schema:sdDatePublished 2019-04-10T21:53
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N945d1fbdb30e4a01b42860991f44c4fd
79 schema:url http://link.springer.com/10.1007%2Fs10111-017-0433-3
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1ae33586aa294f2881dcab17c719e388 rdf:first sg:person.015157352222.50
84 rdf:rest Nc8baadb2279e4373acc1c0a3d25dadc5
85 N360cdc2b49aa49968e892344c08054f5 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 N4f177eac2b9941939a3b9c2f557c9be0 schema:name dimensions_id
88 schema:value pub.1091499982
89 rdf:type schema:PropertyValue
90 N77e060b7a75049ed9a4a85f9cefe17d9 schema:volumeNumber 19
91 rdf:type schema:PublicationVolume
92 N945d1fbdb30e4a01b42860991f44c4fd schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nc8baadb2279e4373acc1c0a3d25dadc5 rdf:first sg:person.012037066427.48
95 rdf:rest Nefa9786a31c44dfa800c7944421f0ee4
96 Nd223f9e314cb4ac38b93a34f12f36590 schema:name doi
97 schema:value 10.1007/s10111-017-0433-3
98 rdf:type schema:PropertyValue
99 Nefa9786a31c44dfa800c7944421f0ee4 rdf:first sg:person.010335045345.74
100 rdf:rest rdf:nil
101 Nfbdfb05f87fd427682e922142a30ecb0 schema:name readcube_id
102 schema:value da0a1258156ee178091775baa660ff9b71ff0db1373a133dd7796dc4e9f7e1b5
103 rdf:type schema:PropertyValue
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:journal.1029630 schema:issn 1435-5558
111 1435-5566
112 schema:name Cognition, Technology & Work
113 rdf:type schema:Periodical
114 sg:person.010335045345.74 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
115 schema:familyName Yoon
116 schema:givenName Wan Chul
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335045345.74
118 rdf:type schema:Person
119 sg:person.012037066427.48 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
120 schema:familyName Ham
121 schema:givenName Dong-Han
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037066427.48
123 rdf:type schema:Person
124 sg:person.015157352222.50 schema:affiliation https://www.grid.ac/institutes/grid.464612.3
125 schema:familyName Yoon
126 schema:givenName Young Sik
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157352222.50
128 rdf:type schema:Person
129 sg:pub.10.1007/3-540-40891-6_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044624230
130 https://doi.org/10.1007/3-540-40891-6_35
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-1-4615-0445-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006427058
133 https://doi.org/10.1007/978-1-4615-0445-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/pl00011521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008855055
136 https://doi.org/10.1007/pl00011521
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10111-003-0131-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032667893
139 https://doi.org/10.1007/s10111-003-0131-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10111-007-0070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019250957
142 https://doi.org/10.1007/s10111-007-0070-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10111-007-0104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874164
145 https://doi.org/10.1007/s10111-007-0104-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10111-008-0112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030492310
148 https://doi.org/10.1007/s10111-008-0112-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10111-015-0343-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038801324
151 https://doi.org/10.1007/s10111-015-0343-1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10111-017-0426-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090384882
154 https://doi.org/10.1007/s10111-017-0426-2
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1006427058 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1074957349 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1077309699 schema:CreativeWork
159 https://doi.org/10.1002/aris.1440380103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020005375
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/b978-155860808-5/50011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035894
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.aap.2005.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037123008
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.aap.2008.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007167468
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.aap.2009.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029479577
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.aap.2010.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047520067
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.aap.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013429979
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.aap.2013.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046991671
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.aap.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034425760
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.aap.2013.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036014893
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.apergo.2004.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044217978
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.apergo.2004.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024041994
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.apergo.2015.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015917884
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.athoracsur.2006.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815559
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cppeds.2015.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047569227
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ijhcs.2012.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040430078
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jlp.2013.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027421425
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jlp.2015.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001747995
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.outlook.2004.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025016229
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ress.2015.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006034143
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ress.2016.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011400195
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.ssci.2008.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025178622
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ssci.2011.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046516335
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ssci.2011.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038100101
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.ssci.2011.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016620190
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ssci.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027619725
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ssci.2015.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012972292
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0003-6870(02)00010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022957918
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0022-4375(02)00032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003058418
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0925-7535(00)00036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028424544
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0953-5438(01)00039-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025350383
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1080/14639220903536559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009429199
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/ase.1999.802088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093183100
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/306412.306431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026496270
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1177/154193120705100208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064049862
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1177/1748006x13485563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064073464
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1201/9781315587394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095937851
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1201/b17206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095907726
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1518/001872007x312469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067596772
236 rdf:type schema:CreativeWork
237 https://doi.org/10.17730/humo.52.1.u305r18277724374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018056913
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3127/ajis.v13i2.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070995059
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3357/amhp.4218.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027268056
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3357/asem.2228.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003850654
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3357/asem.2913.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015386306
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.14005.30 schema:alternateName Chonnam National University
248 schema:name Department of Industrial Engineering, Chonnam National University, Gwangju, South Korea
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
251 schema:name Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejon, South Korea
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.464612.3 schema:alternateName Korea Institute of Nuclear Safety
254 schema:name Department of Safety Standard, Korea Institute of Nuclear Safety, Daejon, South Korea
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...