On the ergodic convergence rates of a first-order primal–dual algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-30

AUTHORS

Antonin Chambolle, Thomas Pock

ABSTRACT

We revisit the proofs of convergence for a first order primal–dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. The new results can deal with explicit terms and nonlinear proximity operators in spaces with quite general norms. More... »

PAGES

253-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10107-015-0957-3

DOI

http://dx.doi.org/10.1007/s10107-015-0957-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012909932


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France", 
          "id": "http://www.grid.ac/institutes/grid.462265.1", 
          "name": [
            "CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chambolle", 
        "givenName": "Antonin", 
        "id": "sg:person.015355621223.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355621223.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, 8010, Graz, Austria", 
            "Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pock", 
        "givenName": "Thomas", 
        "id": "sg:person.015744126036.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01581204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022153870", 
          "https://doi.org/10.1007/bf01581204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-012-0245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027180321", 
          "https://doi.org/10.1007/s10957-012-0245-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-014-0766-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012977761", 
          "https://doi.org/10.1007/s10107-014-0766-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8853-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049823794", 
          "https://doi.org/10.1007/978-1-4419-8853-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-011-9254-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017372143", 
          "https://doi.org/10.1007/s10444-011-9254-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-010-0251-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010318529", 
          "https://doi.org/10.1007/s10851-010-0251-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011253113155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004603933", 
          "https://doi.org/10.1023/a:1011253113155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-004-0552-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030642071", 
          "https://doi.org/10.1007/s10107-004-0552-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-014-0523-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046143184", 
          "https://doi.org/10.1007/s10851-014-0523-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-017-0421-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086031536", 
          "https://doi.org/10.1007/s11228-017-0421-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-30", 
    "datePublishedReg": "2015-10-30", 
    "description": "We revisit the proofs of convergence for a first order primal\u2013dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. The new results can deal with explicit terms and nonlinear proximity operators in spaces with quite general norms.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10107-015-0957-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6208924", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4525963", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "159"
      }
    ], 
    "keywords": [
      "first-order primal-dual algorithm", 
      "primal-dual algorithm", 
      "proof of convergence", 
      "rate of convergence", 
      "ergodic convergence rate", 
      "convex optimization", 
      "proximity operator", 
      "convergence rate", 
      "simple proof", 
      "general version", 
      "new results", 
      "explicit terms", 
      "convergence", 
      "complete results", 
      "algorithm", 
      "proof", 
      "operators", 
      "optimization", 
      "space", 
      "general norms", 
      "version", 
      "terms", 
      "norms", 
      "results", 
      "rate", 
      "years"
    ], 
    "name": "On the ergodic convergence rates of a first-order primal\u2013dual algorithm", 
    "pagination": "253-287", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012909932"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10107-015-0957-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10107-015-0957-3", 
      "https://app.dimensions.ai/details/publication/pub.1012909932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_673.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10107-015-0957-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10107-015-0957-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10107-015-0957-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10107-015-0957-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10107-015-0957-3'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      60 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10107-015-0957-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N738a5cf9cb594f11ba9bd36bda5083bf
4 schema:citation sg:pub.10.1007/978-1-4419-8853-9
5 sg:pub.10.1007/bf01581204
6 sg:pub.10.1007/s10107-004-0552-5
7 sg:pub.10.1007/s10107-014-0766-0
8 sg:pub.10.1007/s10444-011-9254-8
9 sg:pub.10.1007/s10851-010-0251-1
10 sg:pub.10.1007/s10851-014-0523-2
11 sg:pub.10.1007/s10957-012-0245-9
12 sg:pub.10.1007/s11228-017-0421-z
13 sg:pub.10.1023/a:1011253113155
14 schema:datePublished 2015-10-30
15 schema:datePublishedReg 2015-10-30
16 schema:description We revisit the proofs of convergence for a first order primal–dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. The new results can deal with explicit terms and nonlinear proximity operators in spaces with quite general norms.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N60f383dd1e474109b08b88746ee01c0c
20 N84dd8072bb47453284bce32f5d96177c
21 sg:journal.1047630
22 schema:keywords algorithm
23 complete results
24 convergence
25 convergence rate
26 convex optimization
27 ergodic convergence rate
28 explicit terms
29 first-order primal-dual algorithm
30 general norms
31 general version
32 new results
33 norms
34 operators
35 optimization
36 primal-dual algorithm
37 proof
38 proof of convergence
39 proximity operator
40 rate
41 rate of convergence
42 results
43 simple proof
44 space
45 terms
46 version
47 years
48 schema:name On the ergodic convergence rates of a first-order primal–dual algorithm
49 schema:pagination 253-287
50 schema:productId N464aa449d1674ea3802ed7db717fa257
51 Ncaf417b2ef5e496b9bd1ba1652876627
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909932
53 https://doi.org/10.1007/s10107-015-0957-3
54 schema:sdDatePublished 2022-11-24T21:00
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N4309a2d450f64512817ff67889882e49
57 schema:url https://doi.org/10.1007/s10107-015-0957-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N4309a2d450f64512817ff67889882e49 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N464aa449d1674ea3802ed7db717fa257 schema:name doi
64 schema:value 10.1007/s10107-015-0957-3
65 rdf:type schema:PropertyValue
66 N60f383dd1e474109b08b88746ee01c0c schema:volumeNumber 159
67 rdf:type schema:PublicationVolume
68 N738a5cf9cb594f11ba9bd36bda5083bf rdf:first sg:person.015355621223.54
69 rdf:rest Nd0089ba4ee754a5aaaa2a91bc6d5dc1d
70 N84dd8072bb47453284bce32f5d96177c schema:issueNumber 1-2
71 rdf:type schema:PublicationIssue
72 Ncaf417b2ef5e496b9bd1ba1652876627 schema:name dimensions_id
73 schema:value pub.1012909932
74 rdf:type schema:PropertyValue
75 Nd0089ba4ee754a5aaaa2a91bc6d5dc1d rdf:first sg:person.015744126036.09
76 rdf:rest rdf:nil
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:grant.4525963 http://pending.schema.org/fundedItem sg:pub.10.1007/s10107-015-0957-3
84 rdf:type schema:MonetaryGrant
85 sg:grant.6208924 http://pending.schema.org/fundedItem sg:pub.10.1007/s10107-015-0957-3
86 rdf:type schema:MonetaryGrant
87 sg:journal.1047630 schema:issn 0025-5610
88 1436-4646
89 schema:name Mathematical Programming
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.015355621223.54 schema:affiliation grid-institutes:grid.462265.1
93 schema:familyName Chambolle
94 schema:givenName Antonin
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355621223.54
96 rdf:type schema:Person
97 sg:person.015744126036.09 schema:affiliation grid-institutes:grid.4332.6
98 schema:familyName Pock
99 schema:givenName Thomas
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4419-8853-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049823794
103 https://doi.org/10.1007/978-1-4419-8853-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01581204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022153870
106 https://doi.org/10.1007/bf01581204
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10107-004-0552-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030642071
109 https://doi.org/10.1007/s10107-004-0552-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10107-014-0766-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012977761
112 https://doi.org/10.1007/s10107-014-0766-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10444-011-9254-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372143
115 https://doi.org/10.1007/s10444-011-9254-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10851-010-0251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010318529
118 https://doi.org/10.1007/s10851-010-0251-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10851-014-0523-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143184
121 https://doi.org/10.1007/s10851-014-0523-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10957-012-0245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180321
124 https://doi.org/10.1007/s10957-012-0245-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11228-017-0421-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086031536
127 https://doi.org/10.1007/s11228-017-0421-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1011253113155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004603933
130 https://doi.org/10.1023/a:1011253113155
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.4332.6 schema:alternateName Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
133 schema:name Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
134 Institute for Computer Graphics and Vision, Graz University of Technology, 8010, Graz, Austria
135 rdf:type schema:Organization
136 grid-institutes:grid.462265.1 schema:alternateName CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
137 schema:name CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...